×
13.12.2019
219.017.ecf7

Результат интеллектуальной деятельности: ИНФРАКРАСНАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ ТЕМПЕРАТУРЫ ВЕТРОГЕНЕРАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20°С. Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора включает источник ИК излучения, канал передачи и приемник. При этом канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода каждый диаметром 90 мкм на основе монокристаллов системы AgTlBrI, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения. Кроме того, в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка. Технический результат - повышение точности и надежности системы контроля температуры. 1 ил.

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20 оС, что, согласно законам Планка и Вина, соответствует спектральному диапазону от 5,1 мкм до 11,5 мкм [M. Planck. The theory of Heat Radiation. – 2nd. – P. Blakiston's Son & Co. – 1914. – P. 252].

Известна диагностика температурного состояния ветрогенератора термопарами и термометрами сопротивления контактным методом
[A. D. Spacek, O. H. Ando Junior, J. M. Neto, V. L. Coelho, M. O. Oliveira,
V. Gruber, L. Schaeffer. Management of mechanical vibration and temperature in small wind turbines using ZigBee wireless network. – 2013. – Vol. 11, № 1. – P.512-517; K. E. Haman, S. P. Malinowski, B. D. Strus. Two new types of ultrafast aircraft thermometer. – 2001. – Vol. 18, Iss. 2. – P. 117-134].
Их недостатком является низкая точность измерения температуры
до ± 1,0 оС, а также помехи, возникающие в результате близкого расположения электрогенератора. Корме того, невозможно ими измерить температуру подвижного объекта.

Таким образом, измерение температуры в труднодоступных, удаленных или подвижных объектов требует применения особых приборов с длинными каналами доставки сигнала, сложной системы их обработки, большого количества дополнительных устройств генерации, преобразования и приема. Кроме того, при воздействии электромагнитных помех, дополнительным требованием к измерительным приборам является помехозащищенность.

Известна инфракрасная (ИК) волоконная сборка из семи галогенидсеребряных световодов системы AgCl – AgBr, предназначенная для бесконтактной визуализации распределения теплового поля от удаленного объекта в диапазоне температур от -150 до +900 оС. Показана принципиальная применимость в низкотемпературной ИК пирометрии на примере передачи теплового изображения нагретой проволоки и лопатки турбины через ИК световод [А. С. Корсаков. Структура фотонно-кристаллических световодов на базе модифицированных галогенидсеребряных кристаллов и исследование их функциональных свойств: автореф. док. дисс. на соиск. степени д-ра.
техн. наук., г. Санкт-Петербург. – 2018. – с. 29 (http://www.npkgoi.ru/?module=articles&c=Perso-nal&b=7&a=5)].

Известна также работа «Экспериментальное исследование теплопереноса инфракрасными галогенидсеребряными световодами» [Шмыгалев, А. С. Экспериментальное исследование теплопереноса инфракрасными галогенидсеребряными световодами: автореф. канд. дисс. на соиск. степени канд. техн., г. Новосибирск. – 2018. – с. 24 (https://www.nstu.ru/science/dissertation_sov/dissertations/view?id=17021)].

В этих работах показан только принцип возможной передачи по галогенидсеребряным ИК световодам теплового изображения, но не предложена конструкция ИК волоконно-оптической системы контроля температуры, который может применяться в ветроненераторах.

Известен волоконно-оптический датчик (ВОД) температуры на основе кварцевых световодов, применяемый в ветрогенераторах [A feasibility study of transformer winding temperature and strain detection based on distributed optical fibre sensors / L. Yunpeng [et.al] // Optics and lasers in engineering. – 2018. – № 111. – P. 167-171], включающий:

– источник излучения – лазеры, длина волны (λ) 1,310 и 1,550 мкм, что соответствует температурам 1039 оС и 1596 оС, соответственно;

– канал передачи излучения – кварцевый световод длиной 90 м, выполненный в виде катушки, прозрачный в указанном спектральном диапазоне;

– приемник – фотодиоды, λ = 1310 мкм и 1550 мкм.

Такой ВОД косвенно определяет температуру с неудовлетворительной точностью определения ±1,0 оС и выше.

Также следует отметить, что главным недостатком данной конструкции, которая реализует метод оптического контроля, является невозможность прямого измерения температуры в диапазоне работы ветрогенератора от +300 до -20 оС, так как оптический диапазон кварцевых волокон ограничен длиной волны 2,0 мкм, что соответствует температуре 1176 оС [W. Wien. Temperature and entropy of starching. – Annals of Physics. – 1894. – Vol. 52. – P. 132-165.], а ветрогенераторные установки работают в диапазоне от -20 оС до +300 оС. Поэтому применяемый в данной конструкции метод контроля температуры требует использования специальных программ и сложных дополнительных систем обработки оптических сигналов. Недостатком данного ВОД является также низкая точность измерения температуры до ±1,0 °С и выше.

Существуют проблемы контроля температуры ветрогенератора, связанные с низкой точностью и косвенным измерением температуры, вызванные воздействием электромагнитных помех генератора и сложным аппаратным комплексом для обработки сигналов. Низкая точность измерения нарушает режим работы ветрогенератора, а также повышает риск его аварийности, а косвенное измерение приводит к снижению точности и надежности системы контроля температуры.

Указанные проблемы решаются за счет того, что в инфракрасной волоконно-оптической системе контроля температуры ветрогенератора, включающей источник ИК излучения, канал передачи и приемник, отличающейся тем, что канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода, каждый диаметром 90 мкм, изготовленного на основе монокристаллов системы Ag1-xTlxBr1-0.54xI0.54x, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения, при этом в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка.

На фигуре показана новая инфракрасная волоконно-оптическая система контроля температуры ветрогенератора, где 1 – источник инфракрасного излучения, 2 – цилиндрическая линза, 3 – волоконная сборка (канал передачи ИК излучения), 4 – собирающая линза, 5 – приемник ИК излучения (тепловизор).

ИК излучение, источником которого является комплектующий узел ветрогенератора (подшипники или обмотки ветрогенератора) (1), работающий в температурном диапазоне от -20 оС до +300 оС (при длинах волн от 11,5 до 5,1 мкм, соответственно) и оптически связанный с каналом передачи (3), собирается цилиндрической линзой (2), которая фокусирует ИК излучение на входной торец волоконной сборки при фокусном расстоянии
30 мм. Данное фокусное расстояние линзы обеспечивает прием ИК излучения от объекта в канал передачи для эффективного контроля температуры бесконтактным способом. Через входной торец ИК излучение поступает в волоконную сборку диаметром 990 мкм и длиной 5 м (3), состоящую из 91 световода, каждый диаметром 90 мкм, изготовленного на основе фото- и радиационно-стойких монокристаллов состава
Ag1-xTlxBr1-0.54xI0.54x, где 0,03≤х≤0,31, и передается к выходному торцу волоконной сборки. Волокна обладают минимально возможным диаметром равным 90 мкм, таким образом при количестве волокон, равном 91 штуке, в сборке обеспечивается высокое пространственное разрешение.
ИК излучение, выходящее из торца волоконной сборки, фокусируется с помощью собирающей линзы (4) на объектив приемника излучения (5), в качестве которого применяется тепловизор, регистрирующий указанную температуру комплектующих узлов ветрогенератора. Линзы изготовлены из тех же монокристаллов, что и световоды.

Технический результат изобретения достигается благодаря прямому бесконтактному измерению температуры ветрогенератора с высокой точностью определения ±0,1 оС и ниже, в прототипе ±1,0 оС и выше. Прямой контроль температуры, вместо косвенного, стал возможным благодаря замене кварцевых волокон, прозрачных в узком спектральном диапазоне
от 0,2 до 2,5 мкм, применяемых в прототипе, на поликристаллические инфракрасные световоды, пропускающие в среднем ИК диапазоне
от 2,0 до 25,0 мкм, что соответствует температурному диапазону
от +900оС до -150 оС. Канал передачи ИК излучения изготовлен
из световодов, получаемых методом экструзии на основе нового класса фото- и радиационно-стойких монокристаллов системы AgBr-(TlBr0.46I0.54).
Из этих же кристаллов изготовлены линзы [Жукова Л. В., Корсаков А. С., Львов А. Е., Салимгареев Д. Д. Волоконные световоды для среднего инфракрасного диапазона: учебник. – Екатеринбург: Издательство УМЦ УПИ, 2016. – 247 с.]. Конструкция новой инфракрасной волоконно-оптической системы контроля температуры ветрогенератора не требует дополнительно сложных систем обработки сигналов и дорогостоящего оборудования, как в прототипе. Следует также отметить, что канал передачи и линзы изготовлены из диэлектриков, которые не реагируют на воздействие электромагнитного излучения.

Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора, включающая источник ИК излучения, канал передачи и приемник, отличающаяся тем, что канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода каждый диаметром 90 мкм на основе монокристаллов системы AgTlBrI, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения, при этом в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка.
ИНФРАКРАСНАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ ТЕМПЕРАТУРЫ ВЕТРОГЕНЕРАТОРА
ИНФРАКРАСНАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ ТЕМПЕРАТУРЫ ВЕТРОГЕНЕРАТОРА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 207.
10.05.2018
№218.016.4657

Универсальный термоэнергетический генератор. варианты

Изобретение относится к области энергетик и может быть использовано в качестве автономных источников энергопитания. Заявлен термоэнергетический генератор, который содержит батарею термоэнергетических модулей, горячие электроды которых подключены к источнику тепловой энергии, а холодные...
Тип: Изобретение
Номер охранного документа: 0002650439
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4664

Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002650410
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.46c0

Способ получения нанокристаллического магнитотвердого материала из сплава системы (nd, ho)-(fe, co)-b

Изобретение относится к производству аморфных и нанокристаллических металлических сплавов путем сверхбыстрой закалки расплавов. Способ получения нанокристаллического магнитотвердого материала из сплава системы (Nd, Ho)-(Fe, Со)-В включает плавление сплава в тигле и выдавливание расплава через...
Тип: Изобретение
Номер охранного документа: 0002650652
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.487a

Гелиодистиллятор

Изобретение может быть использовано для опреснения морских, минерализованных и загрязненных вод. Гелиодистиллятор содержит корпус с прозрачным покрытием 1 и дном 2, размещенный на плавающей платформе 3, конденсатор 8, зачерненные жгуты 5 из гидрофильного материала, прикрепленные внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002651025
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4882

Солнечный опреснитель

Изобретение относится к дистилляции морских, загрязненных или минерализованных вод посредством солнечной энергии. Солнечный опреснитель содержит заполненную жидкостью емкость 1 с оптически прозрачной крышкой 2, теплоприемник 3, выполненный в виде полого металлического стержня, погруженного в...
Тип: Изобретение
Номер охранного документа: 0002651003
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4928

Способ переработки жидких отходов производства диоксида титана

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты...
Тип: Изобретение
Номер охранного документа: 0002651019
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4bff

Способ получения безобжигового зольного гравия

Изобретение относится к технологиям переработки кислых зол ТЭС в заполнитель для бетонов конструкционного назначения. Способ получения безобжигового зольного гравия на основе кислой золы, негашеной извести и щелочного активизатора твердения включает измельчение, дозирование, перемешивание...
Тип: Изобретение
Номер охранного документа: 0002651863
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4f4c

Глушитель звука выстрела, изготовленный по технологии селективного лазерного сплавления металлов

Изобретение относится к области вооружения, а именно к глушителям. Глушитель звука выстрела содержит рабочую часть с перегородками, ячеистое тело и корпус. Корпус выполнен в монолитном исполнении всех своих частей и элементов. Глушитель содержит ребристую структуру заданной шероховатости...
Тип: Изобретение
Номер охранного документа: 0002652767
Дата охранного документа: 28.04.2018
18.05.2018
№218.016.51c9

Способ подготовки к контролю качества монолитного бетона в сборно-монолитных стенах с элементами несъемной железобетонной опалубки

Изобретение относится к области контроля качества монолитного бетона в сборно-монолитных строительных конструкциях и может быть использовано в промышленном и гражданском строительстве. Способ подготовки к контролю качества монолитного бетона в сборно-монолитных стенах с элементами несъемной...
Тип: Изобретение
Номер охранного документа: 0002653211
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.56a7

Способ повышения электрической и механической прочности вакуумно-плотных окон ввода/вывода свч-излучений (варианты)

Изобретение относится к электронной и ускорительной технике для повышения электрической и механической прочности вакуумно-плотных окон ввода и/или вывода энергии СВЧ-излучения в волноводные ускоряющие структуры и может быть использовано при создании/эксплуатации мощных современных ускорителей...
Тип: Изобретение
Номер охранного документа: 0002654582
Дата охранного документа: 22.05.2018
Показаны записи 11-14 из 14.
12.04.2023
№223.018.457e

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам, а именно к кристаллам востребованных для применения в медицине, фармацевтике, таможенном дистанционном контроле и в других областях. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых...
Тип: Изобретение
Номер охранного документа: 0002756580
Дата охранного документа: 01.10.2021
12.04.2023
№223.018.4581

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам, используемым в производстве терагерцовой оптики. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых растворов системы AgCl – AgBr – TlI и содержит хлорид, бромид серебра и иодид...
Тип: Изобретение
Номер охранного документа: 0002756581
Дата охранного документа: 01.10.2021
15.05.2023
№223.018.5971

Способ получения высокопрозрачной кристаллической керамики на основе двух твердых растворов системы agbr - tli (варианты)

Предлагаемый способ относится к получению галогенидных оптических материалов, обладающих эффективными многофункциональными свойствами, конкретно к получению высокопрозрачной в диапазоне от 1,0 до 67,0 мкм кристаллической керамики на основе двух фаз твердых растворов системы AgBr - TlI. Способ...
Тип: Изобретение
Номер охранного документа: 0002762966
Дата охранного документа: 24.12.2021
15.05.2023
№223.018.5972

Способ получения высокопрозрачной кристаллической керамики на основе двух твердых растворов системы agbr - tli (варианты)

Предлагаемый способ относится к получению галогенидных оптических материалов, обладающих эффективными многофункциональными свойствами, конкретно к получению высокопрозрачной в диапазоне от 1,0 до 67,0 мкм кристаллической керамики на основе двух фаз твердых растворов системы AgBr - TlI. Способ...
Тип: Изобретение
Номер охранного документа: 0002762966
Дата охранного документа: 24.12.2021
+ добавить свой РИД