×
08.12.2019
219.017.eb7a

Результат интеллектуальной деятельности: ИЗМЕРЕНИЕ ТОЛЩИНЫ СЛОЯ ЗЕМЛЯНОГО ПОКРЫТИЯ

Вид РИД

Изобретение

№ охранного документа
0002708093
Дата охранного документа
04.12.2019
Аннотация: Изобретение относится к способу измерения толщины слоя земляных покрытий, в частности, при проложенных под землей газовых и нефтяных трубопроводах. Способ измерения толщины слоя земляных покрытий, в частности, при проложенных под землей газовых и нефтяных трубопроводах, в котором подлежащее покрытию устройство измеряется и его координаты запоминаются относительно заданной системы координат, отличается тем что после нанесения земляного покрытия измеряется профиль местности над устройством, и из него определяется модель местности и сохраняется в заданной системе координат, и что из координат устройства и модели местности определяется толщина слоя земляного покрытия. Технический результат – упрощение контролирования слоя земли. 6 з.п. ф-лы, 1 ил.

Изобретение относится к способу измерения толщины слоя земляного покрытия, в частности, при проложенных под землей газовых и нефтяных трубопроводах.

Проложенные под землей газовые и нефтяные трубопроводы должны быть, в соответствии с предписаниями закона, покрыты землей с минимальной толщиной слоя. При этом эксплуатационники трубопровода должны с периодическими интервалами проверять сохранение этой толщины слоя и устанавливать изменения покрытия. При этом обычно предполагается точность измерения примерно 10 см.

В настоящее время прохождение трубопровода обычно контролируется с помощью вертолетов с воздуха, и при наличии оптически-визуальных сомнительных результатов, толщина слоя оценивается на земле посредством измерения вручную.

Однако это не является непрерывным во времени измерением с высокой частотой облета, поскольку относительно дорогостоящие облеты с помощью вертолетов обычно осуществляется лишь каждые 2-4 недели или даже каждый квартал.

Кроме того, за счет эрозии почвы может происходить непрерывный снос земляного покрытия, так что не сохраняется заданная толщина покрытия, без возникновения оптически заметных изменений. Поэтому толщину слоя необходимо проверять с регулярными интервалами посредством обхода и измерений вручную.

Поэтому в основу изобретения положена задача создания способа, с помощью которого может быть упрощено контролирование толщины слоя.

Задача решена, согласно изобретению, с помощью способа, согласно пункту 1 формулы изобретения.

Предпочтительные варианты выполнения указаны в зависимых пунктах формулы изобретения.

Ниже приводится более подробное пояснение изобретения со ссылками на фигуру, на которой в качестве примера показано использование, согласно изобретению, беспилотного летательного аппарата.

На фиг. 1 показан проложенный в грунте и покрытый землей трубопровод 1, при этом толщина 4 слоя покрытия землей должна иметь заданное минимальное значение.

Положение и прохождение трубопровода 1 предпочтительно точно определено во время процесса прокладки и внесено в память. При этом значение имеет, прежде всего, верхняя кромка трубы, она измеряется обычно с кадастровой точностью, т.е. с допустимыми отклонениями в установленном нижнем сантиметровом диапазоне. Между отдельными измерительными точками можно выполнять (линейную) интерполяцию, с целью получения тем самым непрерывного прохождения трубопровода (контура трубопровода). Это измерение может при необходимости выполняться с помощью беспилотных летательных аппаратов.

Однако возможно также определение положения, соответственно, прохождения трубопровода 1 в последующем в закопанном состоянии с помощью подходящих способов измерения.

Это может осуществляться, например, с помощью так называемых измерительных кротов с инерциальными измерительными системами, которые вводятся в трубу. Другая возможность состоит в измерении с помощью радарных технологий.

Затем с помощью беспилотных летательных аппаратов создается цифровая модель 3 местности, т.е. цифровое числовое запоминание информации о высоте ландшафта над и вокруг трубопровода 1.

Это может осуществляться, например, с помощью фотограмметрии, при которой соответствующая местность во время пролета измерительных видеокамер фотографируется из различных положений. Из накладывающихся друг на друга снимков измерительных видеокамер затем создается цифровая модель 3 местности, которая вместе с данными прохождения трубопровода используется для определения толщины слоя земляного покрытия 4.

Наряду с камерами, которые работают в различных спектральных диапазонах, беспилотные летательные аппараты могут иметь также, например, радарные или лазерные измерительные системы.

Кроме того, необходимо точное определение положения беспилотного летательного аппарата во время облета и фотографирования, соответственно, во время процессов измерения.

Для этого пригодны, в частности, системы глобальной спутниковой навигации, точность которых может быть улучшена с помощью стационарных приемных станций, которые передают сигналы коррекции пользователю.

В качестве альтернативы спутниковым навигационным системам возможно определение положения с помощью магнитометров, гироскопических датчиков, а также барометрических датчиков.

При облете с помощью беспилотного летательного аппарата 2 целесообразно уже учитывать при управлении полетом известное прохождение трубопровода, т.е. определять точки пути облета автоматически из контура трубопровода. Так, например, летательный аппарат 2 может выдерживать постоянную высоту над трубопроводом и тем самым реагировать на изменения высоты в топографии местности.

В то время как для управления только полетом достаточна обычная точность систем GPS, для создания цифровой модели 3 местности из фотографий беспилотного летательного аппарата 2 требуется точное определение положения, которое может осуществляться, например, с помощью кинематики реального времени (Real Time Kinematic, RTK) или дифференциальной глобальной системы позиционирования (DGPS). Это определение положения не должно выполняться для каждой фотографии, достаточно, когда с помощью отдельных точных положений можно определять абсолютное положение модели местности и ее абсолютные размеры.

Кинематикой реального времени называется специальный вариант дифференциальной системы GPS, которая использует не сообщения GPS, а несущую частоту сигнала для синхронизации. Однако поскольку несущая частота существенно выше частоты сообщений, то достигаемая с помощью кинематики реального времени точность также существенно выше, чем в обычном способе дифференциальной GPS, и лежит в диапазоне нескольких сантиметров.

Создание трехмерной модели местности может осуществляться с помощью фотограмметрического способа и с использованием измерительных видеокамер, т.е. камер с небольшими погрешностями изображения.

Однако в качестве альтернативного решения можно использовать также такие способы, как, например, лазерная альтиметрия (Airborne Laser scanning)/

Лазерное сканирование (называемое также LiDAR - Light Detection And Raging) является методом дистанционного распознавания, при котором с помощью лазерного луча сканируется поверхность земли и измеряется расстояние между измеряемой точкой на поверхности земли и датчиком.

Когда сканирующий блок находится на летательном аппарате 2, то это называется воздушным лазерным сканированием.

Преимущества лазерного сканирования состоят, прежде всего, в достигаемой высокой плотности измерительных точек и точности измерения, а также в возможности проникновения через растительность.

Таким образом, способ образует отличную основу для создания цифровой модели местности, которая, в противоположность цифровой модели поверхности, представляет поверхность земли без зданий и растительности.

В качестве активной системы лазер не зависит от солнечного света, и его можно использовать также ночью для измерения данных.

Воздушные лазерные сканеры для съемок местности обычно работают с длиной волны между 800 и 900 нм (инфракрасный диапазон), спектральные значения которого составляют 0,1-0,5 нм.

Может быть целесообразным согласование длины волны применяемого лазера с областью использования, поскольку вид отражения, соответственно, поглощения объектом лазерных лучей зависит от длины волны. Так, например, водные поверхности отражают свет в видимом диапазоне очень сильно, так что применение лазера с длиной волны в видимом диапазоне затрудняет оценку.

При собственно измерении толщины слоя определяется расстояние верхней кромки трубопровод 1 до соответствующей лежащей вертикально над ним точки модели 1 местности, т.е. сравнивается высота точек на контуре трубопровода с высотой соответствующей каждой точки географической ширины и долготы на модели 3 местности.

При расположении трубопровода 1 на склоне может быть целесообразным определять не только расстояние между верхней кромкой трубы и лежащей вертикально над ней точкой модели 3 местности, а кратчайшее расстояние между точкой на окружности трубопровода 1 и точкой пересечения модели 3 местности с предпочтительно расположенной перпендикулярно оси трубы плоскостью сечения. Таким образом, можно устанавливать также боковые отклонения от заданной толщины слоя.

В показанном примере выполнения для измерения прохождения или профиля местности используется беспилотный летательный аппарат 2, который является особенно целесообразным относительно доступности и эффективности использования. Однако в принципе изобретение не ограничивается этим, и возможно использование любых пилотируемых и беспилотных транспортных средств, если они пригодны для размещения измерительных устройств.

Кроме того, возможно также использование стационарных измерительных устройств.

Предпочтительно, когда способ, согласно изобретению, согласован с системой контролирования и управления трубопровода (SCADA). Так, например, сообщение о неисправности системы управления может инициировать использование измерения толщины слоя в определенной зоне трубопровода, и результаты измерения могут оптически отображаться с помощью системы контролирования и управления.

Изобретение можно использовать предпочтительно не только для измерения толщины слоя земляного покрытия в различно проложенных газовых и нефтяных трубопроводах, но также, например, для водопроводов, кабелей электрического тока и других устройств.

Перечень позиций

1 Трубопровод

2 Беспилотный летательный аппарат

3 Цифровая модель местности

4 Толщина слоя земляного покрытия


ИЗМЕРЕНИЕ ТОЛЩИНЫ СЛОЯ ЗЕМЛЯНОГО ПОКРЫТИЯ
ИЗМЕРЕНИЕ ТОЛЩИНЫ СЛОЯ ЗЕМЛЯНОГО ПОКРЫТИЯ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 1 427.
10.07.2013
№216.012.5558

Способ дифференциальной защиты и устройство для дифференциальной защиты

Изобретение используется в области электротехники. Технический результат - повышение надежности. Согласно способу для каждой фазы (13а, 13b, 13с) по меньшей мере в двух местах измерения защищаемого объекта (11) измеряют значения тока, из значений тока определяют для каждой фазы (13а, 13b, 13с)...
Тип: Изобретение
Номер охранного документа: 0002487451
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.555f

Способ управления многофазным выпрямителем переменного тока с распределенными накопителями энергии при низких выходных частотах

Изобретение относится к области электротехники и может быть использовано для управления многофазным выпрямителем переменного тока с, по меньшей мере, двумя модулями (100) фаз, имеющими, соответственно, две ветви (T1,…, T6) вентилей - одну верхнюю и одну нижнюю, имеющие, соответственно, две...
Тип: Изобретение
Номер охранного документа: 0002487458
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.5780

Компрессор для газовой турбины

Компрессор для газовой турбины содержит кольцеобразный в поперечном сечении тракт течения для сжимаемой в нем среды, корпус, по меньшей мере, одно отверстие отбора в наружной стенке и, по меньшей мере, одно расположенное в корпусе отверстие. Тракт течения ограничен радиально снаружи...
Тип: Изобретение
Номер охранного документа: 0002488008
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.579f

Элемент горелки и горелка с коррозионно-стойкой вставкой

Изобретение относится к области энергетики. Фланец (20) опоры горелки, содержащий поверхность, которая потенциально контактирует с горючим материалом, содержит выполненный из основного материала основной корпус (21) и выполненную из коррозионностойкого материала вставку (22), причем вставка...
Тип: Изобретение
Номер охранного документа: 0002488039
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57b1

Плавильная печь

Изобретение относится к металлургическому производству. Технический результат - повышение качества регулирования процесса плавки в печи. Плавильная печь (10) содержит по меньшей мере один возбудитель колебаний (40, 41, 42) и по меньшей мере один сенсор (50, 51, 52), которые размещены на корпусе...
Тип: Изобретение
Номер охранного документа: 0002488057
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5918

Абсорбент, способ его получения и его применение

Изобретение относится к абсорбенту, для удаления диоксида углерода из дымовых газов, образующихся в работающей на ископаемом топливе установке для сжигания. Абсорбент содержит двухкомпонентную смесь из свободной аминокислоты и соли аминокислоты. В пересчете на молярную концентрацию свободная...
Тип: Изобретение
Номер охранного документа: 0002488429
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a9a

Способ и устройство для классификации генерирующих звук процессов

Использование: для классификации генерирующих звук процессов. Сущность: заключается в том, что для классификации генерирующих звук процессов (P) выполняют следующие этапы: определение (S1) звуковых сигналов, которые вызываются генерирующими звук процессами (H), извлечение (S2) признаков (m) из...
Тип: Изобретение
Номер охранного документа: 0002488815
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5e65

Электронный предохранитель блока электропитания

Изобретение относится к защитной схеме блока электропитания установки постоянного напряжения, дающей экономичную возможность выполнения электронного предохранителя в выходном контуре регулируемого блока электропитания. Технический результат заключается в проектировании установки, в которой в...
Тип: Изобретение
Номер охранного документа: 0002489786
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f6f

Конструктивный элемент с каталитической поверхностью, способ его изготовления и применение этого конструктивного элемента

Изобретение относится к конструктивному элементу. Описан конструктивный элемент с катализаторной поверхностью (12), причем катализаторная поверхность (12) состоит из металлических составляющих участков (14) поверхности и соприкасающихся с ними составляющих участков (13) поверхности из MnO, и...
Тип: Изобретение
Номер охранного документа: 0002490063
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.5f96

Способ сварки и конструктивный элемент

Изобретение может быть использовано при ремонте конструктивных элементов с заполнением сваркой углублений поврежденной области. Углубление (4) имеет контур (16), который ограничивает наружную поверхность (13) конструктивного элемента относительно углубления (4). Углубление (4) заполняют слоями...
Тип: Изобретение
Номер охранного документа: 0002490102
Дата охранного документа: 20.08.2013
Показаны записи 1-3 из 3.
19.03.2020
№220.018.0dbd

Система для определения положения трубопроводов

Изобретение относится к области определения местоположения трубопроводов. Система для определения положения трубопроводов с помощью по меньшей мере одного внутритрубного инспекционного геоприбора, который вводится в трубопровод, продвигается в нем и имеет магнитный источник для создания...
Тип: Изобретение
Номер охранного документа: 0002716864
Дата охранного документа: 17.03.2020
21.05.2020
№220.018.1eda

Способ управления беспилотными летательными аппаратами

Изобретение относится к способу управления беспилотным летательным аппаратом (UAV), применяемым для регистрации и замера объектов в заданной области. Для управления UAV для регистрируемой и замеряемой области устанавливают практически беспрепятственную зону перелета, в которой UAV с помощью...
Тип: Изобретение
Номер охранного документа: 0002721450
Дата охранного документа: 19.05.2020
23.05.2023
№223.018.6f3e

Способ для визуализации и валидации событий процесса и система для осуществления способа

Изобретение относится к способу для визуализации и валидации событий процесса в системах контроля процессов, содержащему следующие признаки: - стационарно установленная система датчиков сообщает состояния в систему контроля процесса, - при превышении заданных предельных значений система...
Тип: Изобретение
Номер охранного документа: 0002746442
Дата охранного документа: 14.04.2021
+ добавить свой РИД