×
21.11.2019
219.017.e47d

Результат интеллектуальной деятельности: Устройство для определения содержания воды в потоке нефтепродукта

Вид РИД

Изобретение

№ охранного документа
0002706451
Дата охранного документа
19.11.2019
Аннотация: Изобретение относится к области информационно-измерительной техники. Предложено устройство для определения содержания воды в потоке нефтепродукта, включающее отрезок трубы, усилитель и первичный преобразователь. Также введены источник переменного тока, регистратор и термопара, контактирующая с наружной поверхностью отрезка трубы. Первичный преобразователь выполнен в виде нагревателя, расположенного на наружной поверхности отрезка трубы напротив термопары, причем источник переменного тока соединен с нагревателем, выход термопары через усилитель подключен к входу регистратора. Технический результат - упрощение процесса определения содержания воды в потоке нефтепродукта. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения влагосодержания и других физических параметров различных потоков, протекающих по трубопроводам.

Известно устройство, реализующее способ определения содержания воды в нефтепродуктах (см. RU 2450256 С1, 10.05.2012), в котором определение концентрации воды в нефтепродуктах производится с помощью прибора, который состоит из мерной емкости (например, шприца), сливное отверстие которого соединено с разъемным патроном, в котором размещен слой водокоагулирующего материала (например, стекловолокна). Сливное отверстие разъемного патрона в свою очередь соединено с разъемным патроном, в котором размещена фильтрующая перегородка, выполненная из пористого водопоглощающего объемного материала (например, пенополивинилформаля. Согласно работе этого прибора фиксированный объем пробы исследуемого нефтепродукта с помощью шприца последовательно прокачивается через слой водокоагулирующего материала и слой водопоглощающего объемного материала (фильтрующую перегородку). По мере движения потока нефтепродукта через водокоагулирующий слой происходит коагуляция (укрупнение) микрокапель воды. При движении потока нефтепродукта через фильтрующую перегородку микрокапли воды попадают в ее поровою структуру, где происходит их задержка. Далее определяется уровень концентрации воды в исследуемом нефтепродукте путем определения массы воды, задержанной фильтрующей перегородкой. Опытный образец фильтрующей перегородки взвешивается и определяется его масса в граммах. Полученный результат сравнивается с массой эталонного образца фильтрующей перегородки, через которую предварительно был прокачен аналогичный нефтепродукт, в котором вода отсутствовала. Геометрические размеры фильтрующих перегородок и объем прокаченной пробы идентичны. В результате сравнения масс водопоглощающего объемного материала определяют количество воды, содержащейся в исследуемом нефтепродукте, а также концентрацию воды в нефтепродукте.

Недостатком этого известного устройства является сложность, связанную со сравнением массы опытного образца фильтрующей перегородки, с массой эталонного образца фильтрующей перегородки.

Наиболее близким техническим решением к предлагаемому, является принятое автором за прототип устройство, реализующее способ определения содержания воды и суммарного содержания металлосодержащих микроэлементов в нефти и нефтепродуктах (см. RU 2386959 С1, 20.04.2010). Данное устройство содержит отрезок полимерной трубы, первичный преобразователь, выполненный в виде медных пластин, закрепленных на поверхности трубы, датчик-магнитометр, закрепленный по окружности трубы в виде браслета, датчик температуры, двухканальный коммутатор, генератор, генератор рабочей частоты, первый измерительный усилитель, второй измерительный усилитель и счетно-решающее устройство.

Принцип работы этого устройства сводится к тому, что для определения искомых параметров, исследуемый поток контролируемой среды, пропускают через отрезок полимерной трубы, снабженной обкладками конденсатора, играющего роль первичного преобразователя. На конденсатор подают переменное напряжение с двумя разными частотами. Определяют зависимости комплексной электропроводности от этих частот для различных нефтей и смесевых продуктов. После этого для каждого продукта, по разным уровням электропроводности, вычисляют отношение комплексной электропроводности исследуемого продукта, пропорциональное диэлектрической проницаемости контролируемой среды. Для этого через коммутатор поочередно подключают генераторы синусоидальных сигналов с частотой f1 и f2, f1<f2, на вход первичного преобразователя, сигнал с которого через измерительный усилитель поступает в счетно-решающее устройство, где и рассчитывается соотношение комплексной электропроводности продукта. По результату вычисления выбирается конкретная калибровочная модель для данной нефти и по результатам измерения диэлектрической проницаемости нефти на рабочей частоте f1 вычисляют массовую долю воды в нефти. Таким образом, согласно этому устройству для определения процентного содержания воды достаточно измерить диэлектрическую проницаемость смеси и обезвоженного продукта.

К недостатку этого известного технического решения можно отнести сложность процедуры создания калибровочной модели по сортности нефти и содержанию металлических микрочастиц в потоке, а также необходимость определения диэлектрической проницаемости обезвоженной нефти и температурной коррекции измеренных параметров.

Техническим результатом данного устройства является упрощение процесса определения содержания воды в потоке нефтепродукта.

Технический результат достигается тем, что в устройство для определения содержания воды в потоке нефтепродукта, включающее отрезок трубы, усилитель и первичный преобразователь, введены источник переменного тока, регистратор и термопара, контактирующая с наружной поверхностью отрезка трубы, первичный преобразователь выполнен в виде нагревателя, расположенного на наружной поверхности отрезка трубы напротив термопары, причем источник переменного тока соединен с нагревателем, выход термопары через усилитель подключен к входу регистратора.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что определение теплопроводности посредством измерения температуры на наружной поверхности отрезка диэлектрической трубы, дает возможность измерить содержание воды в потоке нефтепродукта.

Наличие в заявляемом усвтройстве совокупности перечисленных существующих признаков, позволяет решить задачу определения содержания воды в потоке нефтепродукта на базе определения теплопроводности посредством измерения температуры на наружной поверхности отрезка диэлектрической трубы с желаемым техническим результатом, т.е. упрощением процесса определения содержания воды в потоке нефтепродукта.

На чертеже представлена функциональная схема предлагаемого устройства.

Устройство содержит источник переменного тока 1, соединенный с нагревателем 2, отрезок диэлектрической трубы 3, термопару 4, подключенную к входу усилителя 5 и регистратор 6.

Устройство работает следующим образом. В основе работы данного устройства лежит теплопроводность, которая предусматривает передачу тепла в неравномерно нагретом теле или в непосредственно соприкасающихся телах. Как правило, теплота передается при наличии разности температур между частями или системами тел, т.е. температурном поле. Согласно предлагаемому техническому решению на наружной поверхности диэлектрической трубы 3 размешают нагреватель 2 в виде проволоки (нагреватель находится в контакте с поверхностью трубы). С противоположенной наружной стороны отрезка трубы (диаметрально проволоки) закрепляют термопару 4, так чтобы ее горячий спай контачил с наружной поверхностью отрезка трубы в одной точке, а холодный спай находился в воздухе. После этого с помощью источника переменного тока 1 пропускают ток через нагреватель. В силу этого нагреватель начинает, греется, и тепло будет передаваться в отрезок трубы. При отсутствии контролируемой среды в трубе (наличие воздуха в трубе) за счет теплопроводности воздуха внутри трубы и ее стенок, изменится температура в точке наружной поверхности трубы, контактирующей горячим спайм термопары. Ввиду разности температур между ее спаями (горячий спай в контакте, а холодный - в воздухе) в термопаре возникнет термоЭДС, которая далее может быть использована для измерения температуры на наружной поверхности отрезка диэлектрической трубы. В данном случае для измерения термоЭДСа, холодный спай термопары соединяется с входом усилителя 5, в котором сигнал усиливается и далее передается на вход регистратора 6, обеспечивающего фиксацию термоЭДС, связанную с температурой наружной поверхности диэлектрической трубы.

Определение содержания воды в нефтепродукте по данному устройству сводится к тому, что сначала по отрезку трубы пропускают чистую воду и при постоянных значениях давления (малое давление) и температуры окружающей среды, а также при определенной величине тока, протекающего через нагреватель, по показаниям регистратора определяют температуру, соответствующую теплопроводности чистой воды с учетом теплопроводности стенок диэлектрической трубы, например, фторопласта -4.

При той же величине тока через проволоку и те же самих значениях температуры и давления окружающей среды (случай чистой воды в трубе), пропускают через указанный отрезок трубы чистый нефтепродукт, например, дизельное топливо, и путем измерения температуры посредством термопары определяют теплопроводность этого нефтепродукта с учетом теплопроводности стенок диэлектрической трубы. После этого через трубу пропускают смесь «вода - дизельное топливо». В этом случае если обозначить теплопроводность воды в данном случае λв, а теплопроводность дизельного топлива - λт, то при наличии в трубе данной двухкомпонентной смеси «вода - дизельное топливо», для вычисления теплопроводности этой смеси λсм, можно записать

λсм = (λв⋅а + λт⋅b)/100,

а и b - соответственно процентные содержания компонентов смеси. Пусть а - процентное содержание воды, а b - процентное содержание нефтепродукта в двухкомпонентной смеси. Последнее выражение (после преобразования), для того чтобы определить искомое значение - процентное содержание воды в данной двухкомпонентной смеси, примет следующий вид

λсм = λв⋅a + λт(100-а)/100.

Отсюда для процентного содержания воды а, имеем

а=100(λсмт)/(λвт).

Таким образом, при предварительно измеренных значениях параметров λт и λв, измерив λсм двухкомпонентной смеси с помощью термопары через теплопроводность, можно вычислить процентное содержание воды в нефтепотоке. При этом условия, связанные с определением теплопроводности двухкомпонентной смеси в трубе, должны быть такими же, как в случае определения теплопроводностей чистой воды и нефтепродукта без воды. Кроме того, скорость потоков в отрезке трубы чистой воды, нефтепродукта без воды и смеси «вода - нефтепродукт», должна быть не большой величиной и целесообразно ее поддерживать постоянной в процессе измерения (необходимость малого значения эффекта конвекции и ее постоянства).

В рассматриваемом случае состояние (состояние из 2-х нерастворимых жидкостей) смеси должно быть таким, чтобы компоненты не вступали в реакцию, например, вода в виде капель - глобул в дизельном топливе (дисперсная фаза).

Для обеспечения эффективной теплопроводности в данном случае необходимым условием является выбор геометрических размеров отрезка диэлектрической трубы с возможностью нагревателя.

Таким образом, в предлагаемом техническом решении измерение теплопроводности смеси «вода - нефтепродукт», дает возможность упростить процедуру определения содержание воды в потоке нефтепродукта.

Предложенное устройство помимо решения задачи определения процентного содержания одного из компонентов в двухкомпонентной жидкой смеси, успешно может быть использовано и для определения компонентов в двухкомпонентной газовой смеси.

Устройство для определения содержания воды в потоке нефтепродукта, включающее отрезок трубы, усилитель и первичный преобразователь, отличающееся тем, что в него введены источник переменного тока, регистратор и термопара, контактирующая с наружной поверхностью отрезка трубы, первичный преобразователь выполнен в виде нагревателя, расположенного на наружной поверхности отрезка трубы напротив термопары, причем источник переменного тока соединен с нагревателем, выход термопары через усилитель подключен к входу регистратора.
Устройство для определения содержания воды в потоке нефтепродукта
Устройство для определения содержания воды в потоке нефтепродукта
Источник поступления информации: Роспатент

Показаны записи 91-100 из 276.
20.01.2016
№216.013.9fae

Способ ускорения нейтральных микрочастиц

Изобретение относится к ускорению микрочастиц и может найти применение в качестве ускорителя элементарных частиц, например атомов, лишенных заряда. Технический результат состоит в повышении к.п.д. и снижении расхода исследуемых образцов. Поток микрочастиц фокусируют на выходе ускорителя за счет...
Тип: Изобретение
Номер охранного документа: 0002572520
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a0dc

Способ удаленного проводного электропитания объектов

Изобретение относится к области электротехники и может быть использовано для дистанционного электропитания привязных летательных аппаратов или привязных подводных робототехнических объектов. Технический результат заключается в снижении габаритно-массовых характеристик, увеличении надежности,...
Тип: Изобретение
Номер охранного документа: 0002572822
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a401

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов содержит первый СВЧ-генератор, делитель...
Тип: Изобретение
Номер охранного документа: 0002573627
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c952

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических...
Тип: Изобретение
Номер охранного документа: 0002578742
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.e89b

Способ измерения диэлектрической проницаемости жидкости в емкости

Изобретение используется для высокоточного определения диэлектрической проницаемости жидкости, находящейся в какой-либо емкости, независимо от ее уровня. Сущность изобретения заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному...
Тип: Изобретение
Номер охранного документа: 0002575767
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2c7d

Гравитационный ускоритель

Изобретение относится к линейным ускорителям и может найти применение в качестве ускорителя элементарных микрочастиц, например молекул или атомов, лишенных заряда. Технический результат состоит в повышении концентрации микрочастиц на выходе, снижении расхода исследуемых образцов и, как...
Тип: Изобретение
Номер охранного документа: 0002579752
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cb4

Радиоволновый фазовый способ измерения толщины диэлектрических материалов

Использование: для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Сущность изобретения заключается в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к...
Тип: Изобретение
Номер охранного документа: 0002579173
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2dbe

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 3 в электрическую энергию содержит опору 4, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002579794
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fe0

Динамический логический элемент и-или

Изобретение относится к области вычислительной техники и может быть использовано для реализации каскадных логических устройств конвейерного типа. Технический результат заключается в упрощении конструкции динамического логического элемента. Технический результат достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002580095
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31ac

Обобщенные неблокируемые двухкаскадные сети клоза

Изобретение относится к области вычислительной техники и может быть использовано для построения параллельных вычислительных систем. Техническим результатом является уменьшение задержки передачи данных и повышение числа коммутируемых абонентов сети. Устройство состоит из двух каскадов, первый из...
Тип: Изобретение
Номер охранного документа: 0002580100
Дата охранного документа: 10.04.2016
Показаны записи 11-14 из 14.
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
16.05.2023
№223.018.5dad

Устройство для определения концентрации выхлопных газов в газоходе дизельных автомобилей и очистки от газов

Изобретение относится к очистке отработавших газов дизельных двигателей внутреннего сгорания и регенерации сажевых фильтров. Предложенное устройство содержит сажевый фильтр, первый СВЧ-генератор, второй СВЧ-генератор, усилитель и компаратор. При этом в него введены первый элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002757745
Дата охранного документа: 21.10.2021
03.06.2023
№223.018.76af

Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу

Изобретение относится к области приборостроения, в частности к способам измерения расхода потоков веществ. Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу, заключается в том, что поток контролируемой среды нагревают микроволновым излучением. Сначала...
Тип: Изобретение
Номер охранного документа: 0002748325
Дата охранного документа: 24.05.2021
05.06.2023
№223.018.7730

Устройство для молниеотвода от привязного коптера

Изобретение относится к средствам защиты объектов различного назначения при прямом или близком воздействии молниевых разрядов, электромагнитных импульсов (ЭМИ), коротких замыканий и коммутаций энергооборудования, в частности к средствам молниезащиты, беспилотных летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002767515
Дата охранного документа: 17.03.2022
+ добавить свой РИД