×
21.11.2019
219.017.e432

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦЫ РАЗДЕЛА ДВУХ ВЕЩЕСТВ В РЕЗЕРВУАРЕ

Вид РИД

Изобретение

№ охранного документа
0002706455
Дата охранного документа
19.11.2019
Аннотация: Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ. Техническим результатом является повышение точности измерения. В способе размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ и ƒ, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, дополнительно между параллельными наружными проводниками отрезков длинной линии возбуждают как в отрезке двухпроводной линии электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и ƒ и Δϕ, по результату которого определяют положение границы раздела веществ. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения положения границы раздела двух веществ, находящихся в каком-либо резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ.

Известны способы и устройства для измерения положения границы раздела двух веществ в резервуарах, основанные на применении отрезков длинных линий (коаксиальной линии, двухпроводной линии и др.) в качестве чувствительных элементов (Викторов В.А. Резонансный метод измерения уровня. М.: Энергия. 1969. 192 с.). Такой отрезок длинной линии размещается вертикально в емкости с контролируемыми веществами, образующими в резервуаре границу раздела. Измеряя какой-либо его информативный параметр, в частности, резонансную частоту электромагнитных колебаний, можно определить положение границы раздела двух веществ. Недостатком таких способов измерения и реализующих их устройств является невысокая точность измерения, обусловленная зависимостью результатов измерения уровня от электрофизических параметров обоих или одного из веществ, образующих границу раздела.

Известно также техническое решение (SU 460447, 10.04.1973), которое содержит описание двухканального устройства - уровнемера, в котором в двух независимых отрезках длинных линий с разными нагрузками на их на концах, образующих его измерительные каналы, возбуждаются электромагнитные колебания типа ТЕМ на основной (1-ой) гармонике. Их другие концы подсоединены к входам соответствующих вторичных преобразователей, выходы которых соединены с входом блока обработки информации, выход которого подключен к индикатору. Вдоль данных отрезков длинной линии имеет место разное распределение энергии электромагнитного поля стоячей волны, требуемое для получения информации об уровне жидкости независимо от ее электрофизических параметров. Измеряя их резонансные частоты ƒ1 и ƒ2 электромагнитных колебаний (являющиеся функциями уровня z жидкости и его диэлектрической проницаемости ε), можно найти уровень z из соотношения где и - начальные (при z=0) значения ƒ1 и ƒ2. Это соотношение обладает свойством инвариантности к величине ε и ее возможным изменениям. Недостатком этого способа является невысокая точность измерения при измерении положения границы раздела двух веществ в резервуаре, с непостоянными значениями диэлектрической проницаемости вышерасположенного вещества.

Известно также техническое решение (SU 1765712 А1, 10.10.1980), по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа, в котором применяют два независимых отрезка длинной линии с оконечными горизонтальными участками разной длины, располагаемых вертикально отрезок длинной линии, и заполняемых жидкостью в соответствии с ее уровнем в резервуаре. Измеряя резонансные частоты этих отрезков длинной линии или фазовые сдвиги волн фиксированной частоты после их распространения вдоль этих отрезков длинной линии и производя их совместную функциональную обработку согласно математическим соотношениям, соответствующим именно этому способу измерения, можно определить значения уровня жидкости независимо от диэлектрической проницаемости жидкости.

Недостатком этого способа также является невысокая точность измерения при измерении положения границы раздела двух веществ в резервуаре, в частности двух несмешивающихся жидкостей с разной плотностью, с непостоянными значениями электрофизических параметров вышерасположенного вещества.

Техническим результатом является повышение точности измерения положения границы раздела двух веществ в резервуаре.

Технический результат достигается тем, что в предлагаемом способе измерения положения границы раздела двух веществ в резервуаре, содержащем два вещества, одно над другим, образующие плоскую горизонтальную границу раздела, размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ1 и ƒ2, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, дополнительно между параллельными наружными проводниками отрезков коаксиальной длинной линии возбуждают как в отрезке двухпроводной длинной линии электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ1 и ƒ2 и Δϕ, по результату которого определяют положение границы раздела веществ независимо от значений электрофизических параметров обоих веществ, образующих границу раздела.

Предлагаемый способ поясняется чертежами на фиг. 1 и фиг. 2.

На фиг. 1 приведена схема устройства для реализации способа.

На фиг. 2 показано распределение напряженности электрического поля стоячей волны вдоль отрезков коаксиальной длинной линии.

Здесь показаны контролируемые вещества 1 и 2, отрезки коаксиальной длинной линии 3 и 4, отрезок двухпроводной длинной линии 5, электронные блоки 6 и 7, вычислительный блок 8, регистратор 9, электронный блок 10.

Способ реализуется следующим образом.

В резервуаре, содержащем расположенные одно над другим вещества 1 и 2, образующие плоскую границу раздела, размещают вертикально два идентичных отрезка коаксиальной длинной линии 3 и 4 (фиг. 1). Координата z границы раздела веществ 1 и 2, подлежащая определению, отсчитывается от нижних концов отрезков длинной линии; считается, что нижний конец каждого отрезка длинной линии совмещен с дном емкости.

Третий отрезок длинной линии 5 - двухпроводной длинной линии - образован наружными проводниками отрезков коаксиальной длинной линии 3 и 4. Отрезки коаксиальной длинной линий 3 и 4 имеют разные нагрузочные сопротивления на их концах. Это обеспечивает отличие друг от друга двух зависимостей соответствующих резонансных частот ƒ1 и ƒ2 отрезков длинной линии от координаты z границы раздела двух веществ. Между параллельными наружными проводниками отрезков коаксиальной длинной линии - отрезке двухпроводной длинной линии 5 осуществляют с его торца с помощью электронного блока 10 возбуждают электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн. При этом, при совместной функциональной обработке ƒ1, ƒ2 и Δϕ за счет наличия трех отрезков длинной линии, устраняется недостаток способа-прототипа - зависимость результатов измерения значения z от электрофизических параметров обоих веществ, образующих границу раздела.

Для осуществления способа измерения с использованием указанных двух отрезков коаксиальной длинной линии 3 и 4, являющихся резонаторами, возможна, в частности, следующая реализация устройства для этой цели. Один из отрезков однородной коаксиальной длинной линии 3 выполняют короткозамкнутым на нижнем конце (в этом случае реактивное сопротивление нагрузки равно нулю) и разомкнутым на верхнем конце, другой отрезок однородной коаксиальной длинной линии 4 выполняют разомкнутым на нижнем конце (в этом случае реактивное сопротивление нагрузки равно бесконечности) (фиг. 1). Третий отрезок длинной линии - отрезок двухпроводной длинной линии 5, образованный наружными проводниками отрезков коаксиальной длинной линии 3 и 4, разомкнут на нижнем конце

С помощью высокочастотных генераторов, входящего в состав электронных блоков 6 и 7, соответственно, в отрезках коаксиальной длинной линии 3 и 4 возбуждают электромагнитные колебания основного ТЕМ-типа на резонансных частотах ƒ1 и ƒ2, соответственно. В этих же электронных блоках осуществляют также измерение соответствующих резонансных частот ƒ1 и ƒ2. Далее осуществляют в вычислительном блоке 8 совместное преобразование ƒ1, ƒ2 и Δϕ с целью определения положения границы раздела двух веществ 1 и 2 в емкости независимо от значений диэлектрической проницаемости обоих веществ 1 и 2. С выхода вычислительного блока 8 данные о текущем значении положения границы раздела двух веществ 1 и 2 поступают в регистратор 9.

Распределение напряженности электрического поля стоячей волны в этих четвертьволновых отрезках коаксиальной длинной линии 3 и 4 показано на фиг. 2 соответствующими линиями a и b (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 50-59).

Будем считать, что содержащиеся в резервуаре вещества 1 и 2 являются диэлектрическими веществами, характеризуемыми величинами относительных диэлектрических проницаемостей ε1 и ε2, соответственно, вышерасположенного и нижерасположенного веществ.

Для отрезков длинной линии, длина каждого из которых имеет длину и возбуждаемых на, соответственно, резонансных частотах ƒ1 и ƒ2 электромагнитных колебаний, зависимость ƒ1 и ƒ2 от координаты z границы раздела двух веществ можно выразить следующими соотношениями:

где , - начальные (при отсутствии в резервуаре обоих веществ, образующих границу раздела) значения ƒ1 и ƒ2, соответственно; ε1 и ε2 - диэлектрическая проницаемость вышерасположенного и нижерасположенного веществ, соответственно;

U1(ξ) и U2(ξ) - напряжение в точке с координатой ξ соответствующего отрезка линии, возбуждаемого на резонансных частотах ƒ1 и ƒ2, соответственно.

Если отрезок длинной линии короткозамкнут на нижнем конце и разомкнут на верхнем конце (в нем электромагнитные колебания возбуждают на резонансной частоте ƒ1), то в этом случае распределение напряжения вдоль него на основном типе колебаний, возбуждаемом в этом отрезке длинной линии, определяется следующим образом:

Тогда

Если отрезок длинной линии разомкнут на нижнем конце и короткозамкнут на верхнем конце (в нем электромагнитные колебания возбуждают на резонансной частоте ƒ2), то в этом случае распределение напряжения вдоль него на основном типе колебаний, возбуждаемом в этом отрезке длинной линии, определяется следующим образом:

Тогда

В результате будем иметь:

Между параллельными наружными проводниками отрезков коаксиальной длинной линии 3 и 4 как в отрезке двухпроводной длинной линии 5 с его торца с помощью электронного блока 10 возбуждают электромагнитные волны на фиксированной частоте F, принимают отраженные волны, измеряют фазовый сдвиг Δϕ возбуждаемых и принимаемых электромагнитных волн.

Для фазового сдвига Δϕ возбуждаемой на фиксированной частоте F электромагнитной волны и распространившейся вдоль отрезка двухпроводной длинной линии 5 и электромагнитной волны, отраженной от противоположного (нижнего) конца отрезка длинной линии и принимаемой на том же конце, где производим возбуждение волны, в данном случае - при наличии в емкости двух веществ, образующих границу раздела, будем иметь (это вытекает, например, из сведений в монографии: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 73-74):

где z - координата границы раздела между двумя веществами, отсчитываемые от нижнего конца отрезка длинной линии, где координата z=0; Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки на конце отрезка длинной линии.

Фазовый сдвиг Δϕ0 имеет следующее значение: Δϕ0=π-2arctg(Xн/W). Здесь XH - реактивное нагрузочное сопротивление, W - волновое сопротивление отрезка длинной линии. Для короткозамкнутого на конце отрезка длинной линии имеем Δϕ0=π. Для разомкнутого на конце отрезка длинной линии, который в дальнейшем и будем здесь рассматривать, Δϕ0=0.

Рассматривая соотношения (1), (2) и (9) как систему уравнений относительно трех неизвестных ε1, ε2 и z, в результате ее решения находим их значения. Из совместного преобразования соотношений (1) и (2) следует:

Подставив эти найденные значения ε1 и ε2 в соотношение (9), записанное для отрезка двухпроводной длинной линии, разомкнутого на нижнем конце (при этом Δϕ0=0) получим следующее соотношение для определения z, которое является инвариантом относительно ε1 и ε2:

В соотношении (12) информация об измеряемой величине z содержится в неявном виде. Следовательно, производя согласно соотношению (12) совместное функциональное преобразование значений величин ƒ1, ƒ2 и Δϕ, поступающих с трех отрезков длинной линии 3, 4 и 5 в вычислительный блок 8 устройства, реализующего данный способ измерения, можно определить текущее значение величины z независимо от значений величин ε1 и ε2.

В вышеприведенных формулах следует использовать вместо ε1 и ε2 значения эффективной диэлектрической проницаемости εэфф1 и εэфф2, соответственно, при применении отрезков длинной линии, по меньшей мере, один из проводников каждого из которых покрыт диэлектрической оболочкой определенной толщины (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С. 125-131). В этом случае возможно измерение положения границы раздела двух веществ с произвольными электрофизическими параметрами (диэлектрической проницаемости, электропроводности) независимо от их значений для обоих веществ и возможных изменений в процессе измерения.

Таким образом, данный способ позволяет определять положение границы раздела двух веществ в резервуаре независимо от электрофизических параметров обоих веществ, образующих границу раздела.

Способ измерения положения границы раздела двух веществ в резервуаре, содержащем два вещества, одно над другим, образующие плоскую горизонтальную границу раздела, в котором размещают вертикально два идентичных отрезка коаксиальной длинной линии, заполняемых средами в соответствии с их расположением в резервуаре, возбуждают в отрезках длинной линии электромагнитные колебания на резонансных частотах ƒ и ƒ, которым соответствуют разные распределения энергии электромагнитного поля стоячей волны вдоль данных отрезков длинной линии, и измеряют эти резонансные частоты, отличающийся тем, что дополнительно между параллельными наружными проводниками отрезков коаксиальной длинной линии возбуждают, как в отрезке двухпроводной длинной линии, электромагнитные волны на фиксированной частоте, принимают на том же конце распространившиеся вдоль него и отраженные от его нижнего конца отрезка электромагнитные волны, измеряют фазовый сдвиг Δϕ этих возбуждаемых и принимаемых электромагнитных волн и осуществляют совместное функциональное преобразование ƒ и ƒ и Δϕ, по результату которого определяют положение границы раздела веществ независимо от значений электрофизических параметров обоих веществ, образующих границу раздела.
СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦЫ РАЗДЕЛА ДВУХ ВЕЩЕСТВ В РЕЗЕРВУАРЕ
СПОСОБ ИЗМЕРЕНИЯ ПОЛОЖЕНИЯ ГРАНИЦЫ РАЗДЕЛА ДВУХ ВЕЩЕСТВ В РЕЗЕРВУАРЕ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 276.
20.01.2016
№216.013.9fae

Способ ускорения нейтральных микрочастиц

Изобретение относится к ускорению микрочастиц и может найти применение в качестве ускорителя элементарных частиц, например атомов, лишенных заряда. Технический результат состоит в повышении к.п.д. и снижении расхода исследуемых образцов. Поток микрочастиц фокусируют на выходе ускорителя за счет...
Тип: Изобретение
Номер охранного документа: 0002572520
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a0dc

Способ удаленного проводного электропитания объектов

Изобретение относится к области электротехники и может быть использовано для дистанционного электропитания привязных летательных аппаратов или привязных подводных робототехнических объектов. Технический результат заключается в снижении габаритно-массовых характеристик, увеличении надежности,...
Тип: Изобретение
Номер охранного документа: 0002572822
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a401

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов содержит первый СВЧ-генератор, делитель...
Тип: Изобретение
Номер охранного документа: 0002573627
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c952

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических...
Тип: Изобретение
Номер охранного документа: 0002578742
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.e89b

Способ измерения диэлектрической проницаемости жидкости в емкости

Изобретение используется для высокоточного определения диэлектрической проницаемости жидкости, находящейся в какой-либо емкости, независимо от ее уровня. Сущность изобретения заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному...
Тип: Изобретение
Номер охранного документа: 0002575767
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2c7d

Гравитационный ускоритель

Изобретение относится к линейным ускорителям и может найти применение в качестве ускорителя элементарных микрочастиц, например молекул или атомов, лишенных заряда. Технический результат состоит в повышении концентрации микрочастиц на выходе, снижении расхода исследуемых образцов и, как...
Тип: Изобретение
Номер охранного документа: 0002579752
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cb4

Радиоволновый фазовый способ измерения толщины диэлектрических материалов

Использование: для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Сущность изобретения заключается в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к...
Тип: Изобретение
Номер охранного документа: 0002579173
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2dbe

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 3 в электрическую энергию содержит опору 4, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002579794
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fe0

Динамический логический элемент и-или

Изобретение относится к области вычислительной техники и может быть использовано для реализации каскадных логических устройств конвейерного типа. Технический результат заключается в упрощении конструкции динамического логического элемента. Технический результат достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002580095
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31ac

Обобщенные неблокируемые двухкаскадные сети клоза

Изобретение относится к области вычислительной техники и может быть использовано для построения параллельных вычислительных систем. Техническим результатом является уменьшение задержки передачи данных и повышение числа коммутируемых абонентов сети. Устройство состоит из двух каскадов, первый из...
Тип: Изобретение
Номер охранного документа: 0002580100
Дата охранного документа: 10.04.2016
Показаны записи 81-86 из 86.
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД