×
21.11.2019
219.017.e425

Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002706524
Дата охранного документа
19.11.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя содержит компрессор низкого давления, канал второго контура, вход в который сообщен с выходом из компрессора низкого давления, а выход - с затурбинной полостью. Система охлаждения затурбинных элементов снабжена воздухо-воздушным теплообменником, установленным в канале третьего контура и сообщенным входом и выходом с каналом второго контура. За воздухо-воздушным теплообменником по ходу движения газового потока в канале второго контура установлено устройство для расширения газового потока. Устройство для расширения газового потока выполнено в виде лопаток турбодетандера. Изобретение направлено на повышение эффективности охлаждения затурбинных элементов двигателя. 4 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области конструирования турбореактивного двигателя (далее ТРД), а именно к системам охлаждения затурбинных элементов трехконтурного ТРД (далее ТТРД).

В качестве наиболее близкого аналога (прототипа) выбрана система охлаждения затурбинных элементов для трехконтурного турбореактивного двигателя, содержащая компрессор низкого давления (далее КНД), канал второго контура, вход в который сообщен с выходом из компрессора низкого давления, а выход с затурбинной полостью (см. фиг. 3 документа, номер публикации которого: US 2012131902 (А1)).

Недостатком известной системы охлаждения затурбинных элементов трехконтурного турбореактивного двигателя является низкая степень повышения давления в третьем контуре (в наружном кольцевом обводном канале) за наружными компрессорными лопатками по сравнению со степенью повышения давления за компрессором низкого давления. В этом случае давление воздуха передаваемого по третьему контуру (по наружному обводному каналу) к охлаждаемым затурбинным элементам двигателя недостаточно для преодоления давления горячего газового потока обтекающего поверхности охлаждаемых затурбинных элементов двигателя, т.е. система охлаждения не охладит элементы форсажной камеры (при ее наличии), затурбинный кок, элементы дозвуковой части реактивного сопла, но сможет охладить элементы сверхзвуковой части сопла. Кроме того, при сжатии воздуха в ступенях компрессора его температура повышается, что снижает возможность охлаждения затурбинных элементов двигателя.

Техническим результатом, достигаемым заявленным изобретением, является повышение эффективности охлаждения затурбинных элементов ТТРД.

Указанный технический результат достигается тем, что в известной системе охлаждения затурбинных элементов трехконтурного турбореактивного двигателя, содержащей КНД, канал второго контура, вход в который сообщен с выходом из компрессора низкого давления, а выход с затурбинной полостью, согласно настоящему изобретению, система дополнительно снабжена воздухо-воздушным теплообменником (ВВТ), установленным в канале третьего контура и сообщенным входом и выходом с каналом второго контура, при этом за воздухо-воздушным теплообменником по ходу движения газового потока в канале второго контура установлено устройство для расширения газового потока.

Воздух, поступающий на вход в двигатель при стандартных условиях на уровне земли при скорости полета равной нулю, на входе в двигатель имеет полное давление Р*=1 атм. и полную температуру Т*=288К. В существующих компрессорах низкого давления ТРД воздух сжимается до уровня полного давления 5×Р*=5 атм., при этом нагревается до уровня полной температуры 1,65×Т*=470К, часть воздуха с секундным расходом G2 поступает во второй контур.

Установленный в канале третьего контура с секундным расходом воздуха G3 воздухо-воздушный теплообменник, сообщен входом и выходом с каналом второго контура, позволяет снизить температуру воздуха второго контура. На фигуре 1 показана схема работы ВВТ. При выполнении условия коэффициента эффективности теплообмена равного ожидаемого, например, по патенту RU 2612668, полная температура воздуха второго контура на выходе из ВВТ составит Т*гор. вых=340К, при этом гидравлические потери воздуха второго контура на выходе из ВВТ могут составить порядка 10%, т.е. Р*гор. вых=4,5атм. Воздух третьего контура за ВВТ будет подогрет, полное давление несколько понизится.

По ходу движения газового потока в канале второго контура за ВВТ установлено устройство для расширения газового потока. За счет увеличения площади проходного сечения в канале с дозвуковой скоростью потенциальная энергия газового потока срабатывается в устройстве в кинетическую энергию, вместе с этим снижается давление и понижается полная температура воздуха второго контура.

Срабатывать полное давление нужно до величины, позволяющей преодолеть давление горячего газового потока внутреннего контура, обтекающего поверхности охлаждаемых затурбинных элементов двигателя, например, таких как затурбинный кок, элементы выходного устройства ТТРД. В данном случае воздух в турбодетандере расширяется до Р*=2,2-2,3 атм., полная температура охлаждающего воздуха снижается на величину порядка 15% и составляет Т*=290К.

Таким образом, полная температура охлаждающего воздуха сопоставима с температурой воздуха на входе в двигатель, а давление охлаждающего воздуха позволяет преодолеть давление горячего газового потока внутреннего контура, обтекающего поверхности охлаждаемых затурбинных элементов двигателя.

В частных случаях реализации заявленной системы:

- устройство для расширения газового потока выполнено в виде лопаток турбодетандера, что позволяет скомпоновать лопатки турбодетандера в составе трехъярусной лопатки турбовентилятора, позволяя сократить габаритные размеры и массу конструкции турбовентилятора, преградить путь тепловому потоку, распространяющемуся от «горячей» лопатки турбины к «холодной» лопатке вентилятора.

- расход газового потока в третьем контуре G3 составляет от 2×G2 до 15×G2, где G2 - расход газового потока во втором контуре.

В случае, если G3 менее 2×G2, малое количество газового потока G3 создает тягу двигателя с ухудшением топливной экономичности, большое количество газового потока G2 интенсивно охлаждает затурбинные элементы ТТРД, минует сжатие воздуха в вентиляторе, то есть в малой степени участвует в создании тяги двигателя. ТТРД вырождается как устройство создания тяги, но максимально увеличивается интенсивность охлаждения затурбинных элементов ТТРД.

В случае, если G3 более 15×G2, большое количество газового потока G3 создает тягу ТТРД с улучшением топливной экономичности, малое количество газового потока G2 вяло охлаждает затурбинные элементы ТТРД. При этом компонование второго контура в ТТРД непропорционально усложняет конструкцию, увеличивает ее размеры и массу, снижает надежность работы, таким образом, возможность интенсивного охлаждения затурбинных элементов ТТРД вырождается.

- коэффициент эффективности теплообмена воздухо-воздушного теплообменника составляет 0,5-0,8. При снижении величины коэффициента эффективности теплообмена воздухо-воздушного теплообменника ниже 0,5 воздух не будет охлажден до нужной степени и будет получен частичный предполагаемый полезный эффект, при этом затраты на установку воздухо-воздушного теплообменника в канале третьего контура уже будут произведены и не оправданы. Величина коэффициента эффективности теплообмена воздухо-воздушного теплообменника более 0,8 крайне желательна, но ее достижение в реальных конструкциях проблематично.

- статическое давление охлаждающего газового потока из второго контура, подаваемого к затурбинным элементам трехконтурного турбореактивного двигателя превышает статическое давление газового потока непосредственно обтекающего затурбинные элементы трехконтурного турбореактивного двигателя на величину не менее 0,1 кгс/см2. В случае, если статическое давление охлаждающего газового потока из второго контура будет менее 0,1 кгс/см2, до 0 кгс/см2, то не будут в потребной степени охлаждены затурбинные элементы двигателя, если давление снизится менее 0 кгс/см2, поток горячего газа проникнет в полости подвода охлаждающего воздуха и конструкция затурбинные элмеенты двигателя разрушатся.

Сущность настоящего изобретения поясняется фигурой 2, на которой схематично изображена система охлаждения затурбинных элементов ТТРД, продольный разрез. Движение газового потока из второго контура в затурбинную полость показано стрелками.

Система охлаждения затурбинных элементов ТТРД, содержит компрессор низкого давления 1, канал второго контура 2, вход в который сообщен с выходом из компрессора низкого давления 1, а выход - с затурбинной полостью 3 через полые стойки 4 и сквозные каналы 5, воздухо-воздушный теплообменник 6, установленный в канале третьего контура 7 и сообщенный своими входом и выходом с каналом второго контура 2, при этом за воздухо-воздушным теплообменником 6 по ходу движения газового потока в канале второго контура 2 установлено устройство для расширения газового потока, выполненное в виде лопаток турбодетандера 8, являющихся средней частью трехъярусных лопаток турбовентилятора (раскрытых в патенте RU 2634509) установленных на диске турбины (на чертеже не показан), соединенным в свою очередь со статором посредством опор (на фигуре чертежа не показаны).

Газовый поток на выходе из КНД разделяется две неравные части, первая часть направляется в газогенератор, где к ней подводится тепло при сгорании топлива в камере сгорания, вторая часть попадает во второй контур 2. Воздух второго контура 2 проходит через воздухо-воздушный теплообменник 6, расположенный в третьем контуре 7, отдавая тепло холодному воздуху третьего контура 7. Далее последовательно расширяется в лопатках турбодетандера 8, являющихся конструктивной частью трехъярусной рабочей лопатки турбовентилятора, вращающейся под действием напора горячего газового потока прошедшего через газогенератор. Затем расширившийся и охлажденный газовый поток второго контура 2 через полые стойки 4 и сквозные каналы 5 попадает в затурбинную полость 3, вытекает в проточную часть, охлаждая затурбинные элементы ТТРД и смешивается с газовыми потоками.


Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя
Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя
Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя
Источник поступления информации: Роспатент

Показаны записи 1-10 из 110.
29.12.2017
№217.015.f19b

Рабочее колесо второй ступени ротора компрессора высокого давления (квд) турбореактивного двигателя (варианты), диск рабочего колеса ротора квд, лопатка рабочего колеса ротора квд, лопаточный венец рабочего колеса ротора квд

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения. Рабочее колесо второй ступени вала ротора КВД ТРД содержит диск и образующие лопаточный венец рабочие лопатки. Диск включает ступицу с центральным отверстием, полотно и обод. Лопатка содержит...
Тип: Изобретение
Номер охранного документа: 0002636998
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f704

Лопатка турбомашины

Изобретение относится к области турбомашиностроения, а именно к конструкции лопатки турбомашины, в частности осевого компрессора газотурбинного двигателя. Лопатка турбомашины выполнена в виде пера с прикрепленными к нему входной и выходной кромками, выполненными из материала с пористой...
Тип: Изобретение
Номер охранного документа: 0002639264
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f741

Устройство для смазки подшипниковой опоры ротора турбомашины

Изобретение относится к области авиадвигателестроения и касается устройства для смазки опорного подшипника ротора турбомашины, в частности авиационного двухроторного газотурбинного двигателя самолета (ГТД). Патрубок подвода масла выполнен из двух сообщающихся между собой трубопроводов,...
Тип: Изобретение
Номер охранного документа: 0002639262
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f7a0

Узел уплотнения газовой турбины

Изобретение относится к авиадвигателестроению и может быть использовано в конструкциях узла уплотнения турбин авиационных газотурбинных двигателей и газотурбинных установках наземного применения. Узел уплотнения газовой турбины содержит закрепленный на статоре турбины кольцевой корпус (1) со...
Тип: Изобретение
Номер охранного документа: 0002639444
Дата охранного документа: 21.12.2017
29.12.2017
№217.015.f7bd

Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин

Изобретение относится к области стендовых испытаний деталей и корпусов турбомашин, в частности авиационного двигателестроения, а именно к конструкции стендовых силовых рам для статических и циклических испытаний. Универсальная модульная портальная силовая рама содержит силовые стойки,...
Тип: Изобретение
Номер охранного документа: 0002639451
Дата охранного документа: 21.12.2017
20.01.2018
№218.016.15df

Коробка двигательных агрегатов (кда) турбореактивного двигателя, узел кда турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку. Корпус КДА размещен на промежуточном корпусе двигателя. На корпусе КДА смонтированы центробежный топливоподкачивающий насос, суфлер центробежный и насос плунжерный. Со...
Тип: Изобретение
Номер охранного документа: 0002635227
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.15ec

Коробка двигательных агрегатов (кда) турбореактивного двигателя (трд), корпус кда, главная коническая передача (гкп) кда, ведущее колесо гкп кда, ведомое колесо гкп кда, входной вал кда

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку, выполненных с уступообразным плоским дном и цилиндрическими стенками переменной кривизны. Корпус КДА седлообразно размещен на промежуточном корпусе двигателя. Корпус...
Тип: Изобретение
Номер охранного документа: 0002635125
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.1fa9

Поворотное осесимметричное сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, в частности к конструкции поворотного осесимметричного сопла турбореактивного двигателя. Сопло содержит неподвижный корпус со сферической полой законцовкой и поворотное устройство, установленное с возможностью поворота относительно...
Тип: Изобретение
Номер охранного документа: 0002641425
Дата охранного документа: 17.01.2018
17.02.2018
№218.016.2a8e

Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя

Изобретение относится к области турбомашиностроения, в частности, может быть использовано в конструкции рабочих колес осевых компрессоров газотурбинных двигателей. Рабочее колесо ротора компрессора высокого давления газотурбинного двигателя содержит диск с кольцевым пазом и лопатки. Между...
Тип: Изобретение
Номер охранного документа: 0002642976
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2abe

Клапанный узел канала перепуска компрессора

Изобретение относится к газотурбинным двигателям, в частности к клапанным устройствам для газотурбинных двигателей, и может найти применение в авиадвигателестроении. Клапанный узел канала перепуска компрессора, содержащий корпус компрессора, внешний и внутренний корпуса канала перепуска с...
Тип: Изобретение
Номер охранного документа: 0002642991
Дата охранного документа: 29.01.2018
Показаны записи 1-10 из 26.
25.08.2017
№217.015.adf1

Воздухо-воздушный теплообменный аппарат

Изобретение относится к теплообменным аппаратам и может быть использовано, в частности, в области авиадвигателестроения в системах охлаждения воздуха и газа газотурбинных двигателей. Воздухо-воздушный теплообменный аппарат имеет кольцевую форму, состоит из нескольких теплообменных модулей,...
Тип: Изобретение
Номер охранного документа: 0002612668
Дата охранного документа: 13.03.2017
26.08.2017
№217.015.d9b7

Клапанный узел вентилятора

Изобретение относится к области авиационного двигателестроения, а именно к клапанным устройствам для газотурбинных двигателей. Клапанный узел вентилятора содержит корпус канала перепуска с установленным на нем с возможностью осевого перемещения кольцевым клапаном и механизм перемещения...
Тип: Изобретение
Номер охранного документа: 0002623704
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.d9d5

Поворотное сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Поворотное сопло турбореактивного двигателя содержит установленный между форсажной камерой и реактивным соплом двигателя корпус в виде вставки, состоящей из неподвижной...
Тип: Изобретение
Номер охранного документа: 0002623609
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.da17

Всеракурсное сопло

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Всеракурсное сопло содержит установленный между форсажной камерой и реактивным соплом двигателя корпус в виде вставки, состоящей из неподвижной секции и поворотной, способной...
Тип: Изобретение
Номер охранного документа: 0002623705
Дата охранного документа: 28.06.2017
29.12.2017
№217.015.f69c

Способ управления двухроторным газотурбинным двигателем

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем. При останове двигателя генерируемую вращением вала ротора низкого давления электроэнергию передают на электродвигатель-генератор вала ротора высокого давления, для создания...
Тип: Изобретение
Номер охранного документа: 0002639260
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.f7a0

Узел уплотнения газовой турбины

Изобретение относится к авиадвигателестроению и может быть использовано в конструкциях узла уплотнения турбин авиационных газотурбинных двигателей и газотурбинных установках наземного применения. Узел уплотнения газовой турбины содержит закрепленный на статоре турбины кольцевой корпус (1) со...
Тип: Изобретение
Номер охранного документа: 0002639444
Дата охранного документа: 21.12.2017
20.01.2018
№218.016.1334

Трехъярусная рабочая лопатка турбовентилятора

Трехъярусная рабочая лопатка турбовентилятора содержит последовательно расположенные от корпуса турбовентилятора к диску ротора рабочую лопатку вентилятора и рабочую лопатку турбины, соединенные между собой посредством промежуточного элемента с образованием трех проточных газовых каналов....
Тип: Изобретение
Номер охранного документа: 0002634509
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1368

Способ управления двухроторным газотурбинным двигателем самолета в режиме запуска при авторотации

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем, в частности запуска при выходе двигателя на режим авторотации. Частоту вращения вала ротора высокого давления и вала ротора низкого давления уменьшают до достижения роторами...
Тип: Изобретение
Номер охранного документа: 0002634505
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1d6b

Узел уплотнения газовой турбины

Изобретение относится к авиадвигателестроению и может быть использовано в конструкциях узла уплотнения турбин авиационных газотурбинных двигателей и газотурбинных установках наземного применения. Узел уплотнения газовой турбины содержит кольцевой корпус (1) с установленной на нем кольцевой...
Тип: Изобретение
Номер охранного документа: 0002640974
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2abe

Клапанный узел канала перепуска компрессора

Изобретение относится к газотурбинным двигателям, в частности к клапанным устройствам для газотурбинных двигателей, и может найти применение в авиадвигателестроении. Клапанный узел канала перепуска компрессора, содержащий корпус компрессора, внешний и внутренний корпуса канала перепуска с...
Тип: Изобретение
Номер охранного документа: 0002642991
Дата охранного документа: 29.01.2018
+ добавить свой РИД