×
21.11.2019
219.017.e419

Результат интеллектуальной деятельности: Микроэлектромеханический датчик давления

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительным приборам в области микросистемной техники. Датчик давления содержит корпус, чувствительный элемент, мембрана которого расположена на опорном кристалле, в котором выполнено сквозное отверстие и гермокомпенсационные элементы. Опорный кристалл и мембрана чувствительного элемента выполнены из монокристаллического кремния. Опорный кристалл сопряжен с корпусом датчика посредством соединительной трубки. Согласно изобретению термокомпенсационные элементы выполнены планарно в виде вытравленных углублений прямоугольного сечения в опорном кристалле на поверхности, противоположной расположению чувствительного элемента, при этом центральный элемент имеет форму окружности, ось вращения которого совпадает с осью симметрии опорного кристалла, элемент, находящийся на периферии опорного кристалла, имеет форму контура круга с центром, совпадающим с осью симметрии опорного кристалла, с четырьмя вырезами в форме дуг окружностей меньшего радиуса, чем радиус круга, сопряженных с контуром круга. При этом центры окружностей меньшего радиуса лежат на пространственных диагоналях опорного кристалла за контуром круга. Изобретение обеспечивает повышение надежности и стабильности работы, разрешения выходных характеристик и точности микродатчика давления. 3 ил.

Изобретение относится к измерительным приборам в области микросистемной техники, в частности к микродатчикам давления.

Учет как внешних, так и внутренних факторов, нарушающих точность измерения требуемых физических параметров, является критичным при создании высокоточных микродатчиков. Особое внимание уделяется операции по корпусированию чувствительного элемента (далее - ЧЭ), ввиду важной роли, которую она играет в конечных параметрах готового прибора. Среди многих предложенных концепций по механической развязке ЧЭ с. корпусом датчика наиболее устойчивые решения получило направление, согласно которому упаковка ЧЭ может быть выполнена гораздо эффективнее, если требуемые параметры по согласованию конструкционных элементов микродатчика уже заложены в буферном слое или опорном кристалле.

Известен микродатчик давления с опорным кристаллом, описанный в статьях [Hsieh С.-С., Hung С.-С., Li Y.-II. Investigation of a pressure sensor with temperature compensation using two concentric wheatstone-bridge circuits // Modern mechanical engineering. 2013. Vol. 3. P. 104-113; Lee K.-W., Wise K. D. SENSIM: a simulation program for solid-state pressure sensors // IEEE transactions on electron devices. 1982. Vol. ED-29. No. 1. P. 34-41] и патенте US 4129042 (November 1977). Микродатчик содержит опорный кристалл, который состоит из нескольких пластин кремния или боросиликатных стекол, соединенных при помощи электростимулированной (анодной) сварки и объединенных с кристаллом ЧЭ. Существенным недостатком построения ЧЭ микродатчика давления на массивном промежу точном слое кремния или боросиликатного стекла является требование, что все входящие в ЧЭ и опорный кристалл слои должны иметь согласование между тепловыми коэффициентами расширения (ТКР) материала. При этом операция анодного соединения двух кристаллов приводит к преднапряженному состоянию в мембране ЧЭ, что негативно сказывается на характеристиках тензорезисторов и приводит к начальной разбалансировке моста в электрической схеме, в которую включается ЧЭ. Также сказывается присутствие дефектов в опорном кристалле, которые могут привести к изначальной деформации (короблению) мембраны ЧЭ при электростимулированной спайке слоев.

Наиболее близкими по технической сущности к заявленному техническому решению являются микродатчики, содержащие опорные кристаллы гофрированной формы, описанные в книге [Beeby S., Ensel G., Kraft М., White N. MEMS mechanical sensors. Lon.: Artech house MEMS, library. 2004. 281 р.], статье [Offereins H. L., Sandmaier H. Novel stress free assembly technique for micromechanical devices // Microsystem technologies 90. Berlin. September 10-13. 1990. P. 515-520] и патенте SU 1544120 A1, опубликованном от 15.02.1994 (прототип). Микродатчик содержит опорный кристалл, выполненный из монокристаллического кремния, с обеих сторон кристалла сформированы канавки. Эти углубления представляют собой термокомпенсационные элементы. Опорный кристалл выполняет роль буферного слоя и является узлом развязки, обеспечивающим существенное уменьшение передачи механических напряжений от корпуса датчика к ЧЭ. Недостатком такой конструкции является сложность в изготовлении в части получения заданных кристаллографических плоскостей развитого рельефа поверхности опорного кристалла с помощью жидкостного травления с обеих сторон и, соответственно, увеличение стоимости изготавливаемой конструкции, а также недостаточная надежность из-за возникновения эффекта хрупкости при монтаже в областях высокой дефектности (пересечение двух и более кристаллофафических плоскостей в конструкции опорного кристалла). Для случая, когда вместо набора кольцевых термокомпенсаторов используется набор элементов, располагающихся на контуре в форме квадрата, поскольку размеры мембраны ЧЭ могут варьироваться в широком диапазоне, возникает рассогласование по кристаллографическим направлениям среди термокомпенсационных элементов.

Задачей изобретения является разработка микроэлектромеханического датчика давления, конструкция которого позволяет осуществить механическую изоляцию ЧЭ микродатчика для уменьшения механических напряжений в ЧЭ, передающихся от корпуса прибора, вызванных его температурным расширением (сжатием).

Техническим результатом предлагаемого решения является повышение надежности и стабильности работы, разрешения выходных характеристик и точности микродатчика давления.

Технический результат достигается тем, что разработанный микроэлектромеханический датчик давления содержит корпус с приемным портом, чувствительный элемент, мембрана которого расположена на опорном кристалле квадратной формы, в котором выполнено сквозное отверстие и термокомпенсационпые элементы. Опорный кристалл и мембрана чувствительного элемента выполнены из монокристаллического кремния. Опорный кристалл сопряжен с корпусом датчика посредством соединительной трубки с помощью стекловидного припоя или одной из разновидностей эпоксидных смол. Микроэлектромеханический датчик давления отличается тем, что термокомпенсационпые элементы выполнены планарно в виде вытравленных углублений прямоугольного сечения в опорном кристалле на поверхности противоположной расположению чувствительного элемента, при этом центральный элемент имеет форму окружности, ось вращения которого совпадает с осью симметрии опорного кристалла, элемент, находящийся на периферии опорного кристалла, имеет форму контура круга с центром, совпадающим с осью симметрии опорного кристалла, с четырьмя вырезами в форме дуг окружностей меньшего радиуса, чем радиус круга, сопряженных с контуром круга. При этом центры окружностей меньшего радиуса лежат на пространственных диагоналях опорного кристалла за контуром круга.

Предлагаемое техническое решение поясняют следующие фигуры.

На фигуре 1 представлен схематичный вид в разрезе микроэлектромеханического датчика давления.

На фигуре 2 - вид опорного кристалла.

На фигуре 3 - вид опорного кристалла снизу и форма термокомпенсационных элементов.

На фигурах введены следующие обозначения:

1 - опорный кристалла из монокристаллического кремния;

2 - сквозное отверстие в опорном кристалле для поступающего давления;

3 - центральный термокомпенсациоиный элемент;

4 - периферийный термокомпенсационный элемент;

5 - мембрана чувствительного элемента микродатчика давления из монокристаллического кремния;

6 - соединительная трубка;

7 - корпус;

8 - приемный порт для поступающего давления. Устройство работает следующим образом.

Мембрана чувствительного элемента микродатчика давления 5 располагается на опорном кристалле из монокристаллического кремния 1, центральная часть которого закрепляется с помощью соединительной трубки 6 в корпусе 7 посредством стекловидного припоя или одной из разновидностей эпоксидных смол.

При этом область контакта соединительной трубки 6 не превышает 20-40% от нижней грани опорного кристалла 1, уменьшение области контакта опорного кристалла с корпусом способствует снижению области распространения деформаций. На опорном кристалле 1 планарно с одной стороны поверхности (противоположной поверхности на которой расположен ЧЭ) выполнены термокомпенсационные элементы 3-4 в виде вытравленных углублений прямоугольного сечения. Давление газа, подаваемое через приемный порт 8, соединительную трубку 6 и сквозное отверстие 2, деформирует мембрану 5, после чего происходит изменение выходного сигнала с первичной схемы ЧЭ. В условиях изменения температуры сам датчик и все входящие в него конструкционные элементы подвергается линейному расширению (сжатию) во всех направлениях. Это приводит к возникновению неоднородных механических напряжений в чувствительном элементе. Влияние температуры наиболее критично в плоскости мембраны датчика 5, то есть в направлении <100> (проходящего вдоль одной из сторон опорного кристалла 1), согласно обозначению, индексов Миллера. В мембране 5 наблюдается поле деформаций на различных участках. Для компенсации подобных эффектов в опорном кристалле выполнены термокопенсационные элементы 3-4, учитывающие анизотропность кристаллографической решетки кремния. С этой целью элемент 3 имеет форму окружности, ось вращения которого совпадает с осью симметрии опорного кристалла, а элемент 4, находящийся на периферии опорного кристалла, имеет форму контура круга с центром, совпадающим с осью симметрии опорного кристалла 1, с четырьмя вырезами в форме дуг окружностей меньшего радиуса, чем радиус круга, сопряженных с контуром круга, при этом центры окружностей меньшего радиуса лежат на пространственных диагоналях опорного кристалла 1 за контуром круга - в направлении наибольшей плотности элементарной ячейки кремния. Вырезы в форме периферийного термокомпенсационного элемента 4 выполнены таким образом, чтобы при термическом воздействии плоскость (110) имела бы симметричное расхождение относительно других кристаллографических плоскостей направлений <100> , <010>, что также будет справедливо для зеркальной плоскости отражения. Опорный кристалл 1 позволяет релаксировать возникающие механические напряжения за счет термокомпенсационных элементов 3-4. В отличие от существующего прототипа достаточно выполнить одну модификацию поверхности опорного кристалла 1, то есть требуется топологическое изменение рельефа только с одной стороны, чтобы повысить прочностные характеристики, надежность и стабильность работы микродатчика.

Микроэлектромеханический датчик давления благодаря конструкции опорного кристалла и форме термокомпенсационных элементов, входящих в его состав, позволяет получить выходную характеристику с компенсацией температурного дрейфа.

Микроэлектромеханический датчик давления, состоящий из корпуса с приемным портом, опорного кристалла квадратной формы из монокристаллического кремния, в котором выполнено сквозное отверстие и термокомпенсационные элементы, сопряженного с корпусом датчика посредством соединительной трубки с помощью стекловидного припоя или одной из разновидностей эпоксидных смол, и чувствительного элемента, мембрана которого выполнена из монокристаллического кремния и расположена на опорном кристалле, отличающийся тем, что термокомпенсационные элементы выполнены планарно в виде вытравленных углублений прямоугольного сечения в опорном кристалле на поверхности, противоположной расположению чувствительного элемента, при этом центральный элемент имеет форму окружности, ось вращения которого совпадает с осью симметрии опорного кристалла, элемент, находящийся на периферии опорного кристалла, имеет форму контура круга с центром, совпадающим с осью симметрии опорного кристалла, с четырьмя вырезами в форме дуг окружностей меньшего радиуса, чем радиус круга, сопряженных с контуром круга, при этом центры окружностей меньшего радиуса лежат на пространственных диагоналях опорного кристалла за контуром круга.
Микроэлектромеханический датчик давления
Микроэлектромеханический датчик давления
Источник поступления информации: Роспатент

Показаны записи 651-660 из 796.
02.03.2020
№220.018.0802

Способ разделения частиц по плотности методом тяжелосредной сепарации

Изобретение относится к способам сепарации из состава смесей полезных компонентов, разделения смесей твердых частиц по плотности и размерам, в частности, металлов, платины, золота из горнорудного сырья. Способ разделения частиц по плотности методом тяжелосредной сепарации включает смешение...
Тип: Изобретение
Номер охранного документа: 0002715491
Дата охранного документа: 28.02.2020
06.03.2020
№220.018.0997

Фазовращатель

Изобретение относится к области радиотехники, в частности к фазовращателям СВЧ-сигнала, и может быть использовано в качестве функционального узла в приемо-передающих трактах радиотехнических систем и базового элемента при создании коммутирующих устройств СВЧ. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002715910
Дата охранного документа: 04.03.2020
07.03.2020
№220.018.0a11

Способ оценки ядерно-опасного состояния размножающей системы

Изобретение относится к области физики ядерных реакторов. Способ оценки ядерно-опасного состояния размножающей системы (PC) с активной зоной из делящегося материала путем определения коэффициента умножения нейтронов в РС заключается в том, что организуют канал контроля (КК) потока нейтронов,...
Тип: Изобретение
Номер охранного документа: 0002716018
Дата охранного документа: 05.03.2020
09.03.2020
№220.018.0ad2

Способ формирования фазоманипулированного сигнала системы телеметрии и устройство для его осуществления

Изобретение относится к области радиотехники и может найти применение в системах телеметрии. Технический результат: снижение внеполосных спектральных составляющих в излучаемом фазоманипулированном сигнале (ФМ-сигнале), простота практической реализации. В способе формирования ФМ-сигнала...
Тип: Изобретение
Номер охранного документа: 0002716147
Дата охранного документа: 06.03.2020
14.03.2020
№220.018.0c04

Способ безопасной расстыковки линии боксов, загрязненных радионуклидами

Изобретение относится к технологии обращения с источниками ионизирующего излучения, а конкретно к обеспечению радиационной безопасности. Для безопасной расстыковки линии перчаточных боксов, загрязненных радионуклидами, отстыкуемые боксы приподнимают посредством домкратов и устанавливают на...
Тип: Изобретение
Номер охранного документа: 0002716564
Дата охранного документа: 12.03.2020
19.03.2020
№220.018.0dfa

Способ выделения молибдена-99 из топлива растворного реактора и устройство для его осуществления

Изобретение относится к получению изотопов медицинского назначения, в частности Мо-99. Способ включает подачу в сорбционную колонку облученного раствора, содержащего йод, молибден и другие продукты деления урана, пропускание раствора облученного топлива снизу вверх через сорбционную колонку,...
Тип: Изобретение
Номер охранного документа: 0002716828
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0e6e

Газоразрядный генератор высокочастотных импульсов

Изобретение относится к высокочастотной технике и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. Технический результат заключается в увеличении ресурса работы газоразрядного генератора высокочастотных импульсов в интенсивных импульсно-периодических режимах за...
Тип: Изобретение
Номер охранного документа: 0002717091
Дата охранного документа: 18.03.2020
21.03.2020
№220.018.0eb8

Способ определения дальности до поверхности земли

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности от движущегося объекта до поверхности земли, использующих принцип отражения радиоволн. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002717233
Дата охранного документа: 19.03.2020
24.03.2020
№220.018.0f26

Рулевой блок беспилотного управляемого летательного аппарата

Изобретение относится к области управления летательных аппаратов и может быть использовано в управляемых ракетах, планирующих управляемых беспилотных объектах. Технический результат – обеспечение синхронности раскрытия рулей, снижение габаритно-массовых характеристик и повышение надежности....
Тип: Изобретение
Номер охранного документа: 0002717327
Дата охранного документа: 20.03.2020
27.03.2020
№220.018.108a

Устройство для контроля герметичности сосудов большого объема

Изобретение относится к устройствам для контроля герметичности сосудов большого объема. Сущность: устройство представляет собой компактный узел, размещенный внутри замкнутого объема проверяемого сосуда (1), и содержит плиту (2), эталонную камеру (15) давления, термосопротивление (23),...
Тип: Изобретение
Номер охранного документа: 0002717700
Дата охранного документа: 25.03.2020
Показаны записи 1-1 из 1.
20.05.2023
№223.018.661c

Микровакуумметр

Изобретение относится к вакуумной измерительной технике для измерения уровня вакуума в микрополостях, микрообъемах и корпусах датчиков микросистемной техники, в частности к микровакуумметрам, использующим принцип резонанса как основного механизма работы. В микровакуумметре с чувствительным...
Тип: Изобретение
Номер охранного документа: 0002774181
Дата охранного документа: 15.06.2022
+ добавить свой РИД