×
16.11.2019
219.017.e30b

Результат интеллектуальной деятельности: КОЛЛИМАТОР ДЛЯ ЖЕСТКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к коллиматору для жесткого рентгеновского излучения. Тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n - натуральное число, пластин из прозрачного для рентгеновского излучения материала, а толщина каждой из этих пластин D определяется соотношением D=D+h(D+d)/2/f((k-1)/i-1)), где d - толщина пластины из материала с высоким коэффициентом поглощения рентгеновского излучения, D - средняя высота зазора между пластинами толщиной d, f - расстояние от источника излучения до середины коллиматора, k - номер пластины по ходу излучения; набор пластин образует периодическую решетку с периодом d+D. Обеспечена фокусировка периодической решетки на источник излучения; часть пластин толщиной d вместе с прилегающими пластинами толщиной D в области отверстия коллиматора выполнены состоящими из двух равных частей, установленных с возможностью формирования центрального отверстия коллиматора. В возможном варианте устройства пластины в области рабочего отверстия коллиматора установлены с возможностью взаимного перемещения для обеспечения регулирования размеров рабочего центрального отверстия с помощью шаблона заданного сечения. Техническим результатом является возможность регистрировать изображение всего объекта или его большой части при селективном подавлении рассеянного излучения, а также увеличить объем получаемой в одном эксперименте информации за счет перестраиваемой формы поперечного сечения центрального отверстия коллиматора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области рентгеновской техники, а более конкретно,. к устройствам формирования пучков рентгеновского излучения. Оно предназначено для формирования пучка рентгеновского излучения, прошедшего объект исследования, путем селективного снижения уровня рассеянного рентгеновского излучения, попадающего на систему регистрации, при высокой эффективности использования информационных квантов в центральной части пучка, что повышает достоверность рентгеновской регистрации. Может быть использовано в импульсной рентгенографии быстропротекающих процессов.

Классическая схема установки для исследования оптически толстых, объектов во взрывном эксперименте методом теневой рентгенографии содержит источник излучения и коллиматор, ограничивающий поле облучения, размещаемые в защитном сооружении, собственно объект исследования, следующий далее формирующий коллиматор, подавляющий рассеянное излучение, размещаемый между объектом исследования и регистратором, и регистратор рентгеновских изображений [В.В. Клюев и др. Промышленная радиационная интроскопия. - Энергоатомиздат, 1985.1]. Кроме того, установка содержит и другое оборудование.

При просвечивании оптически толстых объектов жестким тормозным излучением, поток первичных квантов, прошедших объект и несущий информацию о геометрии объекта исследования, ослабляется на 4-6 порядков. При этом, как сам объект, так и вспомогательное оборудование эксперимента (коллиматоры, защита, регистратор) становятся источником рассеянного излучения. Поле облучения ограничивается первым коллиматором. Для съемки периферической части объекта уровень излучения обычно оказывается избыточным, и в геометрию рентгенографии добавляются компенсационные фильтры, обеспечивающие попадание в динамический диапазон системы регистрации. Перепад оптической толщины по объекту может составлять 3-4 порядка, при этом периферическая часть объекта становится источником рассеянного излучения, многократно превышающего уровень излучения, прямо проходящего через центральную часть и формирующего изображение объекта. Попадая на систему регистрации, это излучение приводит к уменьшению контраста изображения деталей исследуемого объекта, а, следовательно, и чувствительности рентгенографической методики. Для селективного снижения уровня рассеянного излучения, попадающего на систему регистрации, используются формирующие коллиматоры различных конструкций.

Известен способ селективного подавления рассеянного излучения с помощью отсеивающих решеток [Рентгенотехника справочник, книга 1, М. Машиностроение, 1930, с. 376-383. 2]. В простейшем случае элемент подавления рассеяния, расположенный за объектом исследования, представляет собой набор пластин из материала с высоким коэффициентом поглощения рентгеновского излучения толщиной d и длиной по ходу излучения h, которые чередуются с пластинами (заполнителем) толщиной D из материала прозрачного к рентгеновскому излучению. Селективное подавление рассеянного излучения достигается ориентацией пластин на источник излучения.

Характерными параметрами решетки являются: частота растра N=1/(D+d) - количество абсорбирующих пластин на 1 см; отношение растра r=h/D, фокусное расстояние f0. Производными этих величин являются: прозрачность решетки для первичного излучения Тр; прозрачность решетки для рассеянного излучения Ts; избирательность, фактор улучшения контраста. Достоинством решетки является возможность съемки всего объекта с подавлением рассеянного излучения. Изображение решетки на рентгеновском снимке удаляется при его цифровой обработке, например с помощью частотного фильтра.

Существенным недостатком при использовании решетки в импульсной рентгенографии, является ослабление потока информационных квантов в 3-4 раза по сравнению с потоком без решетки, определяемое геометрической прозрачностью и погрешностями юстировки.

В качестве прототипа выбирается обычный коллиматор [1] представляющий собой массивное тело из материала с высоким коэффициентом ослабления рентгеновского излучения, имеющее отверстие в центральной части, через которое проходят прямопролетные кванты, несущие информацию о структуре объекта [В.В. Клюев и др. Промышленная радиационная интроскопия. - Энергоатомиздат, 1985, с. 20-24.1]. Длина тела коллиматора по ходу излучения h должна быть значительно больше длины половинного ослабления рентгеновского излучения λ для материала коллиматора (h>10λ). Для эффективного подавления уровня рассеянного излучения продольный размер коллиматора должен быть существенно больше диаметра отверстия и само отверстие достаточно малым. При этом получается изображение только малой части объекта исследования, то есть регистрируется только центральная часть объекта, определяемая диаметром центрального отверстия коллиматора, что является недостатком описанного варианта коллиматора - прототипа.

Кроме того, форма поперечного сечения центрального отверстия является фиксированной. Для ее изменения необходимо изготовление другого образца коллиматора и необходимость постановки нового эксперимента.

Технической проблемой изобретения является повышение информативности и достоверности регистрации при обеспечении технологичности с точки зрения получения объема информации в одном постановочном эксперименте.

Достигаемый технический результат состоит в следующем:

Обеспечена возможность регистрировать изображение всего объекта или его большой части при селективном подавлении рассеянного излучения.

Кроме того, коллиматор имеет перестраиваемую форму поперечного сечения центрального отверстия, что позволяет увеличить объем получаемой в одном эксперименте информации.

Данный технический результат достигается за счет того, что в отличие от известного коллиматора для жесткого рентгеновского излучения, представляющего собой тело коллиматора с центральным отверстием, содержащим материал с высоким коэффициентом поглощения рентгеновского излучения, причем длина тела коллиматора по ходу излучения h значительно больше длины половинного ослабления рентгеновского излучения λ в теле коллиматора, в предложенном коллиматоре, тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n - натуральное число, пластин из прозрачного для рентгеновского излучения материала, а толщина каждой из этих пластин Dk определяется соотношением Dk=D+h(D+d)/2/f0((k-1)/i-1)), где d - толщина пластины из материала с высоким коэффициентом поглощения рентгеновского излучения, D - средняя высота зазора между пластинами толщиной d, f0 - расстояние от источника излучения до середины коллиматора, k - номер пластины по ходу излучения; набор пластин образует периодическую решетку с периодом d+D, при этом обеспечена фокусировка периодической решетки на источник излучения; часть пластин толщиной d вместе с прилегающими пластинами толщиной Dk в области отверстия коллиматора выполнены состоящими из двух равных частей, установленных с возможностью формирования центрального отверстия коллиматора. Коллиматор, отличается тем, что пластины в области рабочего отверстия коллиматора установлены с возможностью взаимного перемещения для обеспечения регулирования размеров рабочего центрального отверстия с помощью шаблона заданного сечения.

В заявляемом техническом решении тело коллиматора формируется набором пластин толщиной d из материала с высоким коэффициентом поглощения рентгеновского излучения, например тантала или вольфрама (металла), которые разделены полосками-пластинами толщиной Dk из прозрачного для рентгеновского излучения материала, например лавсана, образующих отсеивающую решетку, сфокусированную на источник излучения. Толщина пластин выбирается, исходя из заявляемого соотношения, а именно, толщина каждой из этих пластин Dk определяется соотношением Dk=D+h(D+d)/2/f0((k-1)/i-1)), где d - толщина металлической пластины, D - средняя высота зазора между металлическими пластинами, f0 - расстояние от источника излучения до середины коллиматора, а k - номер пластины по ходу излучения. Количество пластин толщиной Dk определяется, как 2i+1, где i от 1 до n - натуральное число. Такой выбор геометрии, построенный на основе ее классических законов, обусловлен необходимостью обеспечения ослабления рассеянного, излучения и прозрачности для прямо проходящего излучения.

Пластина d с прикрепленными к ней полосками пластика - пластинами Dk образует элементы, из которых набирается коллиматор. Имеется две группы пластин. Одна - полной ширины коллиматора, вторая половинной ширины. Иными словами, часть пластин толщиной d вместе с прилегающими пластинами толщиной Dk в области отверстия коллиматора выполнены состоящими из двух равных частей, установленных с возможностью формирования центрального отверстия коллиматора. Для выставления отверстия коллиматора может быть использован шаблон. При этом в центральную часть коллиматора устанавливается шаблон (например цилиндрическая труба) профиля коллиматора. Пластины половинной ширины сдвигаются до соприкосновения с шаблоном, формируя требуемый профиль. Профиль, в пределах габаритного размера центральной части коллиматора может быть произвольным. Из пластин полной ширины формируется периферическая часть тела коллиматора. Селективное подавление рассеянного излучения вне отверстия коллиматора достигается ориентацией пластин на источник излучения, а в отверстии за счет большого отношения длины тела коллиматора к диаметру центрального отверстия. При этом в центральной части пучок квантов излучения, несущих информацию об объекте исследования, проходит без ослабления.

Кроме того, пластины в области рабочего отверстия коллиматора могут быть установлены с возможностью взаимного перемещения для обеспечения регулирования размеров рабочего центрального отверстия с помощью шаблона заданного сечения, что позволит перестраивать форму отверстия коллиматора.

Такое выполнение приводит к достижению технического результата. В общем случае форма выполнения коллиматора из пластин разной толщины, выбранной в соответствии с заявляемым соотношением, позволяет регистрировать весь объект и отсечь влияние на результат регистрации паразитного излучения, максимально сохранив при этом влияние полезного излучения (в зоне рабочего отверстия коллиматора), что увеличит объем и повысит достоверность получаемой в эксперименте информации. При этом выполнение коллиматора составным сделает эксперимент более технологичным по сравнению с прототипом, а дополнительное расширение возможностей за счет обеспечения подвижности частей позволит увеличить объем зарегистрированной информации в одном постановочном эксперименте.

На фиг. 1 схематично изображена постановка эксперимента с коллиматором, образованным телом коллиматора, имеющим центральное отверстие, выполненным из заявляемого набора пластин, где 1 - источник излучения, 2 - объект исследования, 3 - коллиматор, 4 - пластина металлическая толщиной d, 5 - пластины - полоски пластика толщиной Dk, 6 - регистратор изображения

На фиг. 2 схематично показано как может быть сформировано центральное рабочее отверстие в теле коллиматора.

Заявляемое решение может быть реализовано следующим образом.

Суть решения схематично изложена на фиг. 1. Тело коллиматора (3) выполняется из набора металлических пластин (выполненное из материала с высоким коэффициентом поглощения рентгеновского излучения, например, из тантала) толщиной d (4), к которым приклеены полоски пластика (например, из лавсана) толщиной Dk (5) переменной в сборе толщины, причем тело коллиматора выполнено из двух частей (за счет того, что часть пластин толщиной d вместе с прилегающими слоями в области отверстия коллиматора выполнены состоящими из двух равных частей, установленных с возможностью формирования центрального отверстия коллиматора), помещая между которыми шаблон (например, трубу диаметром 40 мм), как показано на фиг. 2, формируется центральное отверстие заданного профиля. Для эффективного подавления жесткой компоненты рассеянного излучения отношение растра, h/(D+d) должно быть более 100 [Scott Watson at al. "Design, fabrication, and testing of a lage anty-scatter Bucky grid for megavolt γ-ray imaging", IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec., Oct. 23-29, 2005, v. 2, p. 717-721. 3]. Выбрав толщину пластины из тантала равной 0,5 мм, геометрическую прозрачность 0,5, получаем D+d=1 мм и размер по ходу луча h>100 мм.

К металлической пластине должны быть, например, приклеены по крайней мере три полоски пластика разной толщины, причем толщины полосок выбираются исходя из фокусного расстояния (f0 на фиг. 1), на которое настраивается коллиматор. Например, для коллиматора, настроенного на расстояние 3 м, при h=120 мм, шаге решетки 1 мм, и геометрическом коэффициенте ослабления первичного излучения равном 2, толщины передней, средней и задней полосок-пластин из лавсана по ходу излучения должны быть равны 0,48 мм, 0,50 мм и 0,52 мм, соответственно. Набрав, например, 100 пластин шириной 200 мм и 200 пластин, размещаемых в центральной части, шириной 100 мм, получаем коллиматор с рабочим полем 200*200 мм. Весь набор пластин помещается в конструктив - корпус коллиматора, обеспечивающий сборку с необходимой точностью и юстировку коллиматора относительно источника излучения. От точности юстировки будет зависеть фактор ослабления первичного излучения в зоне перекрываемой решеткой. В результате съемки объекта через такой коллиматор на регистраторе получается изображение объекта в пределах 200*200 мм при селективном подавлении рассеянного излучения. В области центрального отверстия поток информационных квантов не ослабляется телом коллиматора. Заменяя шаблон и заново собирая коллиматор, изменяем размеры и форму центрального отверстия в соответствии с требованиями конкретного эксперимента.

В эксперименте обеспечена возможность регистрировать изображение всего объекта или его большой части при селективном подавлении рассеянного излучения. Кроме того, коллиматор имеет перестраиваемую форму поперечного сечения центрального отверстия, что позволяет увеличить объем получаемой в одном эксперименте информации.


КОЛЛИМАТОР ДЛЯ ЖЕСТКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
КОЛЛИМАТОР ДЛЯ ЖЕСТКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 301-310 из 796.
10.05.2018
№218.016.4a28

Способ управления газоприходом в пороховой баллистической установке и установка для его осуществления

Группа изобретений относится к пороховым баллистическим установкам (ПБУ), используемым в качестве разгонных устройств в стендах для испытаний конструкций на воздействие интенсивных механических нагрузок. Управление газоприходом в ПБУ включает инициирование порохового заряда, установленного в...
Тип: Изобретение
Номер охранного документа: 0002651327
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4aa0

Генератор высокочастотных импульсов на основе разряда с полым катодом

Изобретение относится к области высокочастотной техники и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. Генератор высокочастотного излучения на основе разряда с полым катодом содержит газоразрядную камеру, образованную целым катодом и анодом, к электродам...
Тип: Изобретение
Номер охранного документа: 0002651580
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4aa9

Газоразрядный источник света

Изобретение относится к газоразрядным излучателям, предназначено для использования в области светотехники и может быть использовано для фотограмметрических исследований. Заявляемый газоразрядный источник света содержит заполненную рабочим газом газоразрядную камеру, образованную установленными...
Тип: Изобретение
Номер охранного документа: 0002651579
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b6c

Высоковольтная система электропитания сверхвысокочастотного генератора

Изобретение относится к области импульсной техники, а именно к высоковольтным импульсным источникам электропитания сверхвысокочастотных (СВЧ) прямопролетных генераторов и усилителей. Высоковольтная система электропитания сверхвысокочастотного генератора клистронного типа с рекуперацией энергии...
Тип: Изобретение
Номер охранного документа: 0002651578
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4d89

Бронезащитная преграда

Изобретение относится к области вооружений и военной техники, в частности к броневым конструкциям. Бронезащитная преграда содержит гофрированный слой, выполненный из рессорно-пружинной стали, и фронтальный слой из керамического материала. На тыльную сторону гофрированного слоя устанавливается...
Тип: Изобретение
Номер охранного документа: 0002652416
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d8e

Устройство защиты от кумулятивной струи и осколков взрыва

Изобретение относится к области броневых конструкций, устанавливаемых в частности в камерах специального назначения. Устройство защиты от кумулятивной струи и осколков взрыва содержит установленный в направлении поражающего воздействия перед защищаемым объектом защитный блок, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002652323
Дата охранного документа: 25.04.2018
18.05.2018
№218.016.5072

Способ электроэрозионной обработки

Изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей. В способе электроэрозионную обработку осуществляют при вращении двух соединенных с токоподводами электродов, один из электродов...
Тип: Изобретение
Номер охранного документа: 0002653041
Дата охранного документа: 04.05.2018
18.05.2018
№218.016.51b1

Система охранной сигнализации на основе излучающего кабеля

Изобретение относится к охранной сигнализации. Технический результат заключается в обеспечении выравнивания чувствительности вдоль рубежа обнаружения, повышении помехоустойчивости и уровня обнаружения. Система на основе излучающего кабеля включает передающий излучающий кабель и приемный...
Тип: Изобретение
Номер охранного документа: 0002653307
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.51f6

Стенд для исследования высокоскоростных соударений

Изобретение относится к метательным установкам для исследования высокоскоростных соударений. Стенд для исследования высокоскоростных соударений содержит метательную установку, устройство отделения поддона от метаемого тела и вакуумную трассу, состоящую из последовательно расположенных и...
Тип: Изобретение
Номер охранного документа: 0002653107
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5325

Ампульный химический источник тока и способ его сборки

Изобретение относится к области электротехники, а именно к резервному химическому источнику тока ампульного типа, запускаемому в работу при подаче электролита из ампулы в электродный отсек блока электрохимических элементов (ЭХЭ). Ампульный химический источник тока (АХИТ) включает расчетное...
Тип: Изобретение
Номер охранного документа: 0002653860
Дата охранного документа: 15.05.2018
Показаны записи 1-4 из 4.
10.05.2014
№216.012.c098

Способ получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования и радиографический комплекс для его осуществления

Использование: для получения радиографического изображения быстропротекающих процессов в неоднородном объекте исследования. Сущность изобретения заключается в том, что при получении радиографического изображения быстропротекающих процессов в неоднородном объекте исследований выполняют...
Тип: Изобретение
Номер охранного документа: 0002515053
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c141

Устройство и способы:настройки магнитной системы формирования пучка протонов в объектной плоскости протонографического комплекса, согласования магнитной индукции магнитооптической системы формирования изображения и контроля настройки многокадровой системы регистрации протонных изображений

Изобретение относится к области регистрации изображений, сформированных с помощью пучка протонов, и может быть использовано при исследовании объектов с помощью радиографических методов. Устройство для настройки магнитооптической системы формирования пучка протонов состоит из импульсного...
Тип: Изобретение
Номер охранного документа: 0002515222
Дата охранного документа: 10.05.2014
20.04.2015
№216.013.42bf

Мобильный радиографический комплекс и источник излучения бетатронного типа для радиографического комплекса

Изобретение относится к области импульсной рентгеновской техники, в частности, к способам и устройствам для получения изображения быстропротекающих, в частности взрывных, процессов в оптически непрозрачных объектах исследования, и может быть использовано при радиографии динамических объектов...
Тип: Изобретение
Номер охранного документа: 0002548585
Дата охранного документа: 20.04.2015
09.06.2019
№219.017.7adc

Устройство проводки пучка заряженных частиц

Заявленное изобретение относится к ускорительной технике и сильноточной электронике. Устройство проводки может быть использовано при конструировании систем ввода пучка заряженных частиц в различные ускорители, работающие в режиме однократных импульсов. В заявленном устройстве фокусирующая...
Тип: Изобретение
Номер охранного документа: 0002356193
Дата охранного документа: 20.05.2009
+ добавить свой РИД