×
14.11.2019
219.017.e1bd

Результат интеллектуальной деятельности: Способ формирования на титановых сплавах приповерхностного упрочненного слоя

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроении, в частности к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий, а также к химико-термической обработке поверхности, и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин из титановых сплавов. Способ формирования на изделии из титанового сплава приповерхностного упрочненного слоя включает распыление на поверхность изделия пленки из никелевого сплава, содержащего бета-стабилизирующие добавки, и обработку указанной пленки посредством импульсного электронно-лучевого воздействия. Затем проводят отжиг для инициации процесса дисперсионного твердения за счет образования в приповерхностном слое интерметаллидных фаз. Обеспечивается повышение качества формируемого поверхностного упрочненного слоя за счет создания на поверхности изделия слоя, содержащего бета-титан и интерметаллидные фазы. 4 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к области машиностроении, в частности к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий, а также к химико-термической обработке поверхности, и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин из титановых сплавов.

Известно достаточно много способов упрочнения поверхности титановых сплавов при помощи ионного азотирования. Например, способ азотирования изделий из титановых сплавов (патент US 5443663 А, 22.08.1995), включающий ионное азотирование в плазме тлеющего разряда при температуре 480°C.

Также известен способ азотирования в газовой смеси азот-аргон с процентным соотношением 60% N2-40% Ar (патент RU 2611003 С23С 8/36 2006.01), который включает ионное азотирование в магнитном поле при температуре в вакуумной камере 650-750°C и напряжении в разрядном промежутке 500-600 В сначала при низком давлении упомянутой газовой смеси, составляющем 10-1-1 Па, в течение 4 часов, а затем при давлении упомянутой газовой смеси 100-300 Па в течение 1 часа. При этом обеспечивается получение развитой диффузионной зоны с повышенной микротвердостью и глубиной азотированного слоя на титановой основе.

Недостатками таких способов являются недостаточная микротвердость азотированного слоя и большая длительность процесса азотирования.

Наиболее близким по совокупности существенных признаков является принятый за прототип способ, сущность которого состоит в следующем. При упрочнении поверхности изделий из титановых сплавов наносят металлическое покрытие хрома или молибдена, или циркония и обрабатывают компрессионными плазменными потоками в среде азота при давлении 0,4-0,5 кПа с плотностью энергии 10-30 Дж/см2 и количеством импульсов 2-3. Затем осуществляют азотирование компрессионными плазменными потоками при давлении азота 1-3 кПа с плотностью энергии 1-10 Дж/см2 и количеством импульсов 10-15. Отжиг изделий проводят в течение 60-75 минут. При этом повышается микротвердость, снижается коэффициент трения поверхностного слоя изделий за счет создания мелкодисперсных упрочняющих фаз.

Обработка компрессионными плазменными потоками поверхности изделий из титановых сплавов с предварительно нанесенным покрытием хрома или молибдена, или циркония обеспечивает за время 10-4 секунды плавление поверхностного слоя изделия и нанесенного покрытия и их жидкофазное перемешивание, формирование пересыщенного твердого раствора на основе высокотемпературной фазы титана, стабилизированной атомами легирующего покрытия хрома или молибдена, или циркония. Использование азота в качестве плазмообразующего вещества при генерации компрессионных плазменных потоков обеспечивает диффузионное насыщение поверхностного слоя атомами азота на этапе его охлаждения и формирование упрочняющих нитридов TiN и Ti2N. Отжиг изделия в вакууме способствует частичному распаду сформировавшегося пересыщенного твердого раствора на основе высокотемпературной фазы титана с выделением мелкодисперсных частиц низкотемпературной фазы, обеспечивающих дополнительное упрочнение изделия. Упрочнение поверхностного слоя по заявляемому способу обуславливает уменьшение абразивного и адгезионного износа, что приводит к снижению коэффициента трения поверхности изделия.

(см. патент РФ 2464355, опубл. 20.10.2012 года).

Недостатком такой технологии является а насыщение поверхностного слоя титана и его сплавов газовым α-стабилизатором (азотом), которое выявляется в виде светлого поверхностного слоя с повышенным содержанием α фазы, твердого, но хрупкого, снижающего пластичность и сопротивление усталостному разрушению.

Технической проблемой, на решение которой направленно заявленное изобретение, является формирование технологических параметров способа, основанных на объективно оцененных данных.

Технический результат заключается в повышении качества формируемого поверхностного упрочненного слоя за счет создания на поверхности изделия слоя, содержащего бета-титан и интерметаллидные фазы.

Поставленный технический результат достигается тем, что в способе формирования на титановых сплавах приповерхностного упрочненного слоя, заключающемся в нанесении покрытия в вакуумной камере и последующей обработке этого покрытия концентрированными потоками энергии, для образования упрочненного слоя осуществляют распыление на поверхность изделия никелевого сплава, содержащего бета-стабилизирующие легирующие добавки, обработку покрытия источником электронного пучка и последующий отжиг для инициации процесса дисперсионного твердения за счет образования в поверхностном слое интерметаллидных фаз. Кроме того, в качестве бета-стабилизирующих легирующих добавок могут использовать хром, марганец, молибден, ниобий, ванадий. Кроме того, напыленный слой могут формировать толщиной от 0.2 до 0.4 мкм при напряжении на титановой мишени 480В ± 10% и силе тока 1А ± 10%. Кроме того, синтез поверхностного бета титанового слоя могут осуществлять воздействием на нанесенную магнетронным распылением пленку широкоапертурным электронным пучком с удельной энергией 4.3±2.5% Дж/см2. Кроме того, упрочняющие интерметаллидные фазы в приповерхностном слое изделия могут быть выделены при последующем отжиге при температуре от 500 до 800°C.

В этом случае можно создавать приповерхностный слой толщиной в несколько микрометров с повышенной износостойкостью, благодаря созданию на поверхности детали поверхностного сплава на основе бета титана, обеспечивающего максимальные эффекты твердорастворного упрочнения и дисперсионного твердения за счет интерметаллидных фаз. Последние представляют собой класс материалов, использование которых в различных областях техники интенсивно расширяется благодаря уникальным комплексам свойств, включающим высокие температуры плавления, повышенную механическую прочность, жаропрочность и жаростойкость, коррозионную стойкость в некоторых агрессивных средах, где обычный титан недостаточно стоек. Технология не исключает и возможности последующего нанесения других защитных покрытий на модифицированный объект.

Сущность заявленного изобретения поясняется следующим:

На фиг. 1 изображена схема получения поверхностного сплава,

На фиг. 2 изображена дифрактограмма с поверхности титанового сплава ВТ 1-0

а) в исходном состоянии;

б) после поверхностного легирования никелевым сплавом при помощи электронно-пучковой обработки;

в) после отжига при 800°C в течение 45 минут.

На фиг. 3 представлено изображение поперечного шлифа, на котором видна структура сплава ВТ 1-0 после поверхностного легирования сплавом ХН77ТЮР (травление 1% р-р HF): снизу - после электронно-пучковой обработки, сверху - после дополнительного отжига при 800°C в течение 45 мин.

Способ формирования на титановых сплавах приповерхностного упрочненного слоя заключается в нанесении покрытия в вакуумной камере и последующей обработке этого покрытия концентрированными потоками энергии. Для образования упрочненного слоя осуществляют распыление на поверхность изделия никелевого сплава, содержащего бета-стабилизирующие легирующие добавки, обработку покрытия источником электронного пучка и последующий отжиг для инициации процесса дисперсионного твердения за счет образования в поверхностном слое интерметаллидных фаз. Кроме того, в качестве бета-стабилизирующих легирующих добавок могут использовать хром, марганец, молибден, ниобий, ванадий. Кроме того, напыленный слой могут формировать толщиной от 0.2 до 0.4 мкм при напряжении на титановой мишени 480В ± 10% и силе тока 1А ± 10%. Кроме того, синтез поверхностного бета титанового слоя могут осуществлять воздействием на нанесенную магнетронным распылением пленку широкоапертурным электронным пучком с удельной энергией 4.3±2.5% Дж/см2. Кроме того, упрочняющие интерметаллидные фазы в приповерхностном слое изделия могут быть выделены при последующем отжиге при температуре от 500 до 800°C.

Обработка проводится в установке, которая представляет собой комбинацию источника низкоэнергетических сильноточных электронных пучков «РИТМ» [Markov А.В., Yakovlev E.V., Petrov V.I., Formation of Surface Alloys with a Low-Energy High-Current Electron Beam for Improving High-Voltage Hold-Off of Copper Electrodes, IEEE Transations on Plasma Science, 2013, v 41, 2177-2182.], и двух магнетронных распылительных систем на единой вакуумной камере. Генерация НСЭП включает в себя эмиссию электронов, образование пучка в плазмонаполненном диоде и его транспортировку в плазменном канале. Использование такой схемы генерации позволяет получить пучок микросекундной (около 5 мкс) длительности с плотностью тока до 105 А/см2 при ускоряющем напряжении от 15 до 30 кВ, от величины которого зависит плотность мощности в пучке. Площадь единовременной обработки составляет около 50 см2.

Воздействие импульсного электронного пучка вызывает прохождение упругой волны, которая генерируется при импульсном электронно-лучевом воздействии. При этом в веществе возникает скачок давления, плотности, удельной внутренней энергии и других характеристик, который распространяется по нему со сверхзвуковой скоростью (~103 м/с). За фронтом ударной волны вещество вовлекается в движение, приобретая массовую скорость, величина которой хотя и меньше скорости самой ударной волны, но имеет такой же порядок. Ударное сжатие сопровождается фазовыми, химическими и структурными превращениями. При этом из-за малой длительности процесса облучения (~10-5 с) и тепловой инерции нагрев, обусловленный сжатием и внутренним трением, скорее всего, не является физическим фактором, который определяет поведение вещества в таких условиях. Основную роль в данном случае будет играть механическое активирование быстропротекающих в веществе физико-химических процессов, которые, в основном, являются твердофазными.

Установка позволяет осуществлять напыление пленок разных материалов на поверхность нужного изделия и последующее жидкофазное перемешивание материалов пленки и подложки интенсивным широкоапертурным импульсным электронным пучком (фиг. 1). Из мишени 1 наносится пленка металла 2. Затем на объект с нанесенной на него пленкой воздействует импульсный электронный пучок 3. В результате образуется поверхностный сплав 4.

Условно непосредственное получение упрочненного приповерхностного слоя, обогащенного интерметаллидными фазами на деталях из титановых сплавов можно разделить на три последовательных шага: нанесение пленки, содержащей никель и элементы бета-стабилизаторы (Cr, Mn, V, Мо) на титановую основу, получение поверхностного бета титанового сплава с помощью широкоапертурного концентрированного источника энергии (фиг. 2б) и синтез интерметаллида путем операции дисперсионного твердения (фиг. 2в). Количество основного элемента в титановом сплаве будет оказывать непосредственное влияние на содержание интерметаллидной фазы в приповерхностном слое, и, следовательно, на повышении износостойкости.

При использовании импульсных электронных пучков энергия вводится в приповерхностную область материала на глубину около 1 мкм. Слой толщиной, равной примерно половине длины пробега электронов, расплавляется почти немедленно. Толщину металлической пленки формируют в пределах от 0.2 до 0.4 мкм, чтобы получить возможность одновременного переплавления материала пленки и подложки. Режим нанесения покрытия принципиального значения не имеет. При толщине покрытия менее 0.2 мкм поверхностный сплав недостаточно обогащается легирующими элементами, и необходимая структура не образуется. Толщина титановой пленки, превышающая 0.4 мкм, приводит к недостаточному проплавлению поверхности основы. При этом толщина приповерхностного легированного слоя уменьшается, а большая часть нанесенной металлической пленки испаряется.

Эксперименты на режимах, отличных от заявленных (результаты в рамках настоящей заявки не представлены), показали существенное снижение качества за счет влияния разнонаправленных изложенных выше факторов.

Пример

С целью повышения износостойкости детали из α-титанового сплава ВТ 1-0 на ее поверхность при помощи магнетронного распылителя был нанесен слой металла из мишени, полученной из жаропрочного сплава ХН77ТЮР толщиной 0.3±0.05 мкм. Затем поверхность детали была обработана серией из 5 импульсов широкоапертурного электронного пучка. Обработка была повторена дважды.

В результате обработки был получен тонкий слой поверхностного сплава бета титана, легированного никелем и хромом (фиг. 2б) толщиной до 3 мкм. Зона термического влияния составила до 15 мкм. На фиг. 3 представлена структура сплава ВТ 1-0 после поверхностного легирования сплавом ХН77ТЮР (травление 1% р-р HF): снизу - после электронно-пучковой обработки, сверху - после дополнительного отжига при 800°C в течение 45 мин. После отжига в вакуумной печи при 800°C в течение 45 минут в поверхностном сплаве наблюдались дисперсные выделения интерметаллидных фаз Ti2Ni и Ti4Cr, что подтверждается данными рентгеноструктурного анализа (фиг. 2в). Также наблюдается частичный распад бета фазы, на устойчивость которой можно влиять повышением или понижением температуры старения. Проведенные испытания показали повышение сопротивляемости абразивному изнашиванию более, чем в два раза.

Изложенное позволяет сделать вывод о том, что поставленная задача - обеспечение оптимизации технологических параметров процесса, основанной на объективно измеренных данных - решена, а заявленный технический результат - повышение качества изготовленных изделий - достигнут.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, неизвестной на дату приоритета из уровня техники, необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Свойства, регламентированные в заявленном соединении отдельными признаками, общеизвестны из уровня техники и не требуют дополнительных пояснений.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении предназначен для формирования защитных покрытий из мелкодисперсного композиционного порошка, и может найти применение в отраслях машиностроения;

- для заявленного объекта в том виде, как он охарактеризован в формуле изобретения, подтверждена возможность его осуществления с помощью вышеописанных в материалах заявки и известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует условиям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.


Способ формирования на титановых сплавах приповерхностного упрочненного слоя
Способ формирования на титановых сплавах приповерхностного упрочненного слоя
Способ формирования на титановых сплавах приповерхностного упрочненного слоя
Способ формирования на титановых сплавах приповерхностного упрочненного слоя
Источник поступления информации: Роспатент

Показаны записи 11-20 из 96.
25.08.2017
№217.015.cff6

Способ оценки массы транспортного средства с электроприводом постоянного тока

Изобретение относится к области транспорта и может использоваться для определения массы железнодорожного состава или на других видах транспорта, где в качестве тяговых двигателей используются двигатели постоянного тока (трамвай, троллейбус, электромобиль, подъемно-транспортные средства и др.)....
Тип: Изобретение
Номер охранного документа: 0002620898
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d0dc

Способ лазерной обработки режущих пластин из оксидно-карбидной керамики

Изобретение относится к инструментальной промышленности, а именно к способам обработки режущих пластин из оксидно-карбидной керамики TiC+MgO+AlO. В способе лазерной обработки режущей пластины из оксидно-карбидной керамики TiC+MgO+AlO, при котором поверхность режущей пластины подвергают...
Тип: Изобретение
Номер охранного документа: 0002621245
Дата охранного документа: 01.06.2017
29.12.2017
№217.015.f33d

Способ получения полимерных композиционных материалов

Изобретение относится к способу получения наномодифицированного полимерного композиционного материала, который может быть использован при изготовлении конструкционных композитных изделий в машиностроительной, авиационной, судостроительной, нефтегазовой и строительной промышленности....
Тип: Изобретение
Номер охранного документа: 0002637227
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f4f1

Технологическая линия для изготовления композитной арматуры

Изобретение относится к области машиностроения, в частности к технологическим линиям для непрерывного изготовления арматурных элементов из полимерных композиционных материалов для армирования обычных и предварительно напряженных строительных конструкций. Технологическая линия для изготовления...
Тип: Изобретение
Номер охранного документа: 0002637226
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f8af

Способ управления трением в парах трения

Изобретение относится к управлению трением в парах трения и может найти широкое применение в различных отраслях, таких как станкостроение, транспортное машиностроение, приборостроение и других. Способ регулирования трения в элементах пары трения включает предварительное нанесение на элементы...
Тип: Изобретение
Номер охранного документа: 0002639745
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.fd17

Способ вырезной электроэрозионной обработки изделия

Изобретение относится к электрофизическим и электрохимическим методам обработки, в частности к электроэрозионной обработке на автоматизированных вырезных станках с ЧПУ. Способ включает подачу рабочего напряжения на проволочный электрод-инструмент и обрабатываемое изделие, прокачку рабочей...
Тип: Изобретение
Номер охранного документа: 0002638607
Дата охранного документа: 14.12.2017
19.01.2018
№218.015.ff33

Устройство для лазерного спекания изделия из порошкообразных материалов

Изобретение относится к лазерному спеканию изделия из порошкообразных материалов. Устройство содержит рабочий стол для формирования изделия, связанный с системой управления лазерный излучатель, выполненный с возможностью фокусировки лазерного луча в заданной зоне формирования изделия. При этом...
Тип: Изобретение
Номер охранного документа: 0002629574
Дата охранного документа: 30.08.2017
19.01.2018
№218.015.ff35

Способ выбора инструментального материала

Способ выбора инструментального материала заключается в поочередном силовом воздействии индентора из предназначенного для обработки материала на поверхность образцов инструментальных материалов при их взаимном перемещении. При этом силу воздействия монотонно увеличивают до момента появления на...
Тип: Изобретение
Номер охранного документа: 0002629577
Дата охранного документа: 30.08.2017
19.01.2018
№218.015.ff3b

Способ электроэрозионной обработки детали из токопроводящей керамики на автоматизированных вырезных станках с чпу

Изобретение относится к электрофизическим и электрохимическим методам обработки. Способ включает электроэрозионную обработку заготовки детали проволочным электродом-инструментом, при которой контролируют вибрации на приспособлении для крепления заготовки, причем из сигнала вибраций выделяют...
Тип: Изобретение
Номер охранного документа: 0002629578
Дата охранного документа: 30.08.2017
19.01.2018
№218.015.ff6a

Устройство для автоматической смены инструментов

Изобретение относится к станкостроению и может быть использовано в многооперационных станках с автоматической сменой инструмента. Устройство содержит инструментальный магазин с полками, инструментальные захваты с фиксирующей планкой, размещенные в гнездах полок и выполненные в виде скобы с...
Тип: Изобретение
Номер охранного документа: 0002629580
Дата охранного документа: 30.08.2017
Показаны записи 11-20 из 81.
10.01.2014
№216.012.95e8

Семифазный трансформаторный преобразователь числа фаз

Изобретение относится к преобразовательной технике и может быть использовано при создании выпрямителей для регулируемых электроприводов постоянного и переменного тока. Устройство состоит из трехфазного трансформатора, имеющего три катушки (1, 2 и 3) первичной обмотки, которые соединены по схеме...
Тип: Изобретение
Номер охранного документа: 0002504070
Дата охранного документа: 10.01.2014
27.03.2014
№216.012.af35

Двенадцатифазный повышающий автотрансформаторный преобразователь числа фаз

Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного и переменного тока для повышения быстродействия станков, а также на преобразовательных подстанциях для питания электрифицированных железных дорог, в...
Тип: Изобретение
Номер охранного документа: 0002510568
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.b0d5

Устройство для осаждения металлических пленок

Изобретение относится к вакуумно-плазменной технике, а именно к источникам атомов металла преимущественно для осаждения тонких металлических пленок на диэлектрические подложки в вакуумной камере, и к источникам быстрых атомов и молекул газа. Установка содержит вакуумную камеру 1, эмиссионную...
Тип: Изобретение
Номер охранного документа: 0002510984
Дата охранного документа: 10.04.2014
27.05.2014
№216.012.ca86

Клин для соединения деталей

Изобретение относится к машиностроению и может быть использовано для соединения пакета деталей, работающих в условиях воздействия высоких температур и вибраций и расположенных, преимущественно, в труднодоступных для технического обслуживания местах, например внутри каталитических реакторов для...
Тип: Изобретение
Номер охранного документа: 0002517612
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d5fc

Двенадцатифазный трансформаторный преобразователь числа фаз

Изобретение относится к преобразовательной технике и может быть использовано при создании выпрямителей для регулируемых электроприводов постоянного и переменного тока для станков для повышения их быстродействия. Технический результат заключается в улучшении весогабаритных показателей...
Тип: Изобретение
Номер охранного документа: 0002520558
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d834

Способ получения алюмосиликатного огнеупорного материала

Изобретение относится к области огнеупорных материалов и может быть использовано для получения огнеупорного материала. Техническим результатом изобретения является повышение плотности и рабочей температуры изделий. Способ получения алюмосиликатного огнеупорного материала включает воздействие...
Тип: Изобретение
Номер охранного документа: 0002521126
Дата охранного документа: 27.06.2014
10.08.2014
№216.012.e75e

Способ правки нежестких длинномерных деталей

Изобретение относится к машиностроению и может быть использовано для обработки металлов поверхностным пластическим деформированием нежестких длинномерных деталей. Измеряют величину исходного максимального прогиба длинномерной детали. Устанавливают деталь на концевые опоры. Прикладывают нагрузку...
Тип: Изобретение
Номер охранного документа: 0002525023
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eb7d

Двенадцатифазный понижающий автотрансформаторный преобразователь числа фаз

Предлагаемое изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного и переменного тока и состоит из понижающего автотрансформатора, имеющего три катушки (1, 2 и 3) первичной обмотки и шесть соединенных между собой...
Тип: Изобретение
Номер охранного документа: 0002526093
Дата охранного документа: 20.08.2014
27.09.2014
№216.012.f76d

Двенадцатипульсный повышающий автотрансформаторный преобразователь напряжения

Двенадцатипульсный повышающий автотрансформаторный преобразователь напряжения (с коэффициентом трансформации напряжений Кu=0,5 и нулевой точкой преобразователя) может быть использован при создании преобразователей для регулируемых электроприводов постоянного и переменного тока. Преобразователь...
Тип: Изобретение
Номер охранного документа: 0002529178
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f76f

Двенадцатипульсный повышающий автотрансформаторный преобразователь напряжения

Двенадцатипульсный повышающий автотрансформаторный преобразователь напряжения (с коэффициентом трансформации напряжений Ku=1 и нулевой точкой преобразователя) относится к преобразовательной технике и может быть использован при создании преобразователей для регулируемых электроприводов...
Тип: Изобретение
Номер охранного документа: 0002529180
Дата охранного документа: 27.09.2014
+ добавить свой РИД