×
01.11.2019
219.017.dd56

Результат интеллектуальной деятельности: ЛОПАТКА СОПЛОВОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ, СОДЕРЖАЩАЯ ВСТАВКУ С ИЗМЕНЯЮЩЕЙСЯ ГЕОМЕТРИЕЙ

Вид РИД

Изобретение

№ охранного документа
0002704511
Дата охранного документа
29.10.2019
Аннотация: Лопатка (10) соплового аппарата (8) газотурбинного двигателя (1) содержит перо (12), содержащее стенку (16) корытца и стенку (14) спинки, и вставку (20), расположенную между стенкой (16) корытца и стенкой (14) спинки. Вставка (20) содержит замкнутую стенку (22), имеющую наружную поверхность (24), расположенную напротив стенки (16) корытца и стенки (14) спинки, и внутреннюю поверхность (26), противоположную наружной поверхности (24). Наружная поверхность (24) замкнутой стенки (22) и находящаяся напротив стенка пера (12) разделены воздушным зазором (30). В замкнутой стенке (22) выполнен ряд сквозных отверстий (28), проходящих между наружной поверхностью (24) и внутренней поверхностью (26). В замкнутой стенке (22) выполнен ряд углублений (25), выходящих на наружную поверхность (24). Сквозные отверстия (28) выполнены в углублениях (25). Высоты (h) воздействия между указанными сквозными отверстиями (28) и стенкой (16) корытца или стенкой (14) спинки превышают величину воздушного зазора (30). Углубления (25) в основном имеют полусферическую форму, яйцевидную форму или каплевидную форму. Изобретение направлено на оптимизацию охлаждения, для уменьшения количества охлаждающего воздуха, ограничение термомеханических повреждений. 3 н. и 6 з.п. ф-лы, 5 ил.

Область техники, к которой относится изобретение

Изобретение относится к общей области одноконтурных или двухконтурных газотурбинных двигателей и, в частности, к охлаждению лопаток охлаждаемых сопловых аппаратов.

Уровень техники

Газотурбинный двигатель 1 обычно содержит гондолу или воздухозаборник (пленум), который образует отверстие, через которое заранее определенное количество воздуха поступает собственно в двигатель. Как правило, газотурбинный двигатель содержит одну или несколько зон сжатия 4 для сжатия воздуха, поступающего в двигатель (обычно секцию низкого давления и секцию высокого давления). Сжатый воздух поступает в камеру 5 и смешивается в ней с горючим для осуществления горения.

Затем горячие газообразные продукты сгорания расширяются на различных ступенях 6, 7 турбины. Первое расширение происходит на ступени 6 высокого давления, которая находится непосредственно на выходе из камеры и в которую газ поступает с наиболее высокой температурой. Дальнейшее расширение газов происходит при их прохождении через так называемые ступени турбины 7 низкого давления.

Классически турбина высокого давления 6 или низкого давления 7 содержит одну или несколько ступеней, каждая из которых состоит из ряда неподвижных лопаток турбины, называемых также сопловым аппаратом 8, за которым следует ряд подвижных лопаток турбины, отстоящих друг от друга в окружном направлении вокруг всего диска турбины. Сопловой аппарат 8 отклоняет и ускоряет поток газа, выходящий из камеры сгорания, в сторону подвижных лопаток турбины под соответствующим углом и с соответствующей скоростью, чтобы приводить во вращение эти подвижные лопатки и диск турбины.

Сопловой аппарат 8 содержит множество лопаток, расположенных радиально относительно оси вращения Х газотурбинного двигателя и соединяющих радиально внутренний кольцевой элемент (или внутреннюю полку) и радиально наружный кольцевой элемент (или наружную полку). Все эти компоненты образуют кольцевой проточный тракт напротив подвижных лопаток турбины.

В частности, сопловой аппарат 8 состоит из неподвижных лопаток, расположенных в виде венца, который, в случае необходимости, можно разделить на множество сегментов, распределенных в окружном направлении вокруг оси Х газотурбинного двигателя. Каждый сегмент содержит одну или несколько смежных неподвижных лопаток, соединенных с элементом в виде сектора кольца, а также входное средство удержания и выходное средство удержания. В данном случае вход и выход следует определять по направлению прохождения потока газов в газотурбинном двигателе.

Как правило, лопатки соплового аппарата 8 выполнены посредством литья из жаропрочного сплава на основе никеля или монокристаллического материала, который обладает хорошей жаростойкостью.

Сопловые аппараты 8 турбин 6 высокого давления газотурбинного двигателя являются узлами, подверженными воздействию очень сильных термических напряжений. Действительно, они установлены на выходе из камеры сгорания, и, следовательно, через них проходят очень горячие газы, которые подвергают их очень сильным термическим воздействиям, при этом температура газов на выходе из камеры сгорания намного превышает температуру плавления материалов соплового аппарата 8. Действительно, температура потока на входе в сопловой аппарат 8 может локально достигать 2000°С, при этом в некоторых точках можно нередко наблюдать серьезные повреждения детали, температура плавления которой имеет значение ниже 1400°С.

Чтобы понизить температуру детали и ограничить ее разрушение, необходимо производить охлаждение сопловых аппаратов 8. Обычно функцию охлаждения сопловых аппаратов 8 обеспечивают одна или несколько вставок, расположенных внутри лопаток соплового аппарата 8. Вставка является полой деталью из листового проката или литой деталью, содержащей цилиндрические отверстия, как правило, выполненные при помощи лазера и максимально повторяющей форму охлаждаемой лопатки. «Холодный» воздух, отбираемый на уровне компрессора газотурбинного двигателя, поступает через эти отверстия на внутреннюю сторону лопатки для ее охлаждения.

Таким образом, охлаждение внутренней стороны лопатки происходит за счет обдува струями и за счет явления принудительной конвекции между вставкой и стенкой профиля. Расстояние между вставкой и внутренней стороной лопатки, называемое воздушным зазором, по сути является постоянным.

Вместе с тем, охлаждение лопатки зависит от двух явлений, а именно от воздействия струй и от принудительной конвекции между вставкой и внутренней стороной лопатки. Одним из определяющих параметров для эффективности охлаждения при этих двух режимах является значение воздушного зазора. Действительно, воздушный зазор должен быть минимальным, если необходимо обеспечить максимальную конвекцию, но он не должен быть слишком малым, если необходимо получить максимальную высоту воздействия струй (которая соответствует расстоянию между выходом отверстия и внутренней стенкой лопатки), чтобы оптимизировать эффективность воздействия струй.

В настоящее время, поскольку воздушный зазор является постоянным, компромисс касается его значения, чтобы не слишком снижать воздействия струи в пользу эффективной принудительной конвекции.

Однако характеристики газотурбинного двигателя частично связаны с применяемой системой вентиляции. Действительно, любой отбор воздуха, осуществляемый с целью охлаждения компонентов, отрицательно сказывается на термодинамическом цикле газотурбинного двигателя, в частности, на мощности и на удельном расходе двигателя. Следовательно, необходимо ограничить отборы воздуха до строгого минимума. Таким образом, эффективность используемых систем охлаждения является первостепенной для производительности двигателя и для срока службы соответствующего компонента.

В документе ЕР 2 228 517 описаны лопатка соплового аппарата газотурбинного двигателя, перо и вставка, которую устанавливают в пере и в которой выполняют отверстия. Кроме того, стенку вставки локально сгибают на уровне отверстий, чтобы скрестить воздушные струи и создать завихрения.

В документе ЕР 1 284 338 описаны лопатка соплового аппарата газотурбинного двигателя, перо и вставка, которую устанавливают в пере и в которой выполняют отверстия. Стенка вставки является прерывистой, чтобы получить перекрывания и изменять направление воздействия воздушных струй, направляемых через отверстия на внутреннюю стенку пера.

Раскрытие сущности изобретения

Таким образом, задачей изобретения является оптимизация охлаждения лопаток сопловых аппаратов, чтобы ограничить используемое количество холодного воздуха, при этом конечной целью является ограничение термомеханических повреждений (трещин, обгорания, окисления и т.д.).

В связи с этим изобретением предложена лопатка соплового аппарата газотурбинного двигателя, при этом указанная лопатка содержит:

- перо, содержащее стенку корытца и стенку спинки, и

- вставку, расположенную между стенкой корытца и стенкой спинки, при этом вставка содержит:

- замкнутую стенку, имеющую наружную поверхность, расположенную напротив стенки корытца и стенки спинки, и внутреннюю поверхность, противоположную наружной поверхности, при этом наружная поверхность замкнутой стенки и находящаяся напротив стенка пера разделены воздушным зазором, и

- ряд сквозных отверстий, выполненных в замкнутой стенке между наружной поверхностью и внутренней поверхностью.

Вставка лопатки содержит ряд углублений в основном полусферической формы, яйцевидной формы или каплевидной формы, выполненных в замкнутой стенке и выходящих на наружную поверхность. Кроме того, сквозные отверстия выполнены в указанных углублениях, и высоты воздействия между указанными сквозными отверстиями и находящейся напротив стенкой корытца или стенкой спинки превышают воздушный зазор.

Вышеупомянутая лопатка имеет также следующие предпочтительные, но неограничивающие признаки, рассматриваемые отдельно или в комбинации:

- сквозные отверстия имеют периферию определенной максимальной ширины, при этом соотношение между высотой воздействия и максимальной шириной всех или части сквозных отверстий составляет от 2,5 до 10, предпочтительно от 2,5 до 7, еще предпочтительнее от 2,5 до 5, как правило, от 2,8 до 3,2, например, равно 3,

- сквозные отверстия являются круглыми, при этом максимальная ширина указанных сквозных отверстий соответствует их диаметру,

- внутренняя поверхность замкнутой стенки вставки дополнительно содержит приливы, при этом указанные сквозные отверстия выходят в указанные приливы,

- высота воздействия составляет от 1,0 мм до 3,0 мм, предпочтительно от 1 мм до 2мм, как правило, от 1 мм до 1,5 мм,

- воздушный зазор составляет от 0,5 мм до 1,0 мм, предпочтительно от 0,5 мм до 0,8мм и, как правило, равен 0,6 мм, и/или

- внутренняя сторона стенки корытца и стенки спинки дополнительно содержит выступы, выполненные на указанной внутренней стороне в направлении наружной поверхности вставки.

Вторым объектом изобретения является также сопловой аппарат турбины газотурбинного двигателя, содержащий внутреннюю кольцевую полку и наружную кольцевую полку, коаксиальные вокруг оси, а также ряд описанных выше лопаток соплового аппарата, при этом указанные лопатки распределены в окружном направлении вокруг оси между внутренней полкой и наружной полкой.

Третьим объектом изобретения является способ изготовления описанной выше лопатки соплового аппарата, в котором вставку выполняют путем селективного плавления на слое порошка при помощи пучка высокой энергии.

Краткое описание чертежей

Другие отличительные признаки, задачи и преимущества настоящего изобретения будут более очевидны из нижеследующего подробного описания со ссылками, которые иллюстрируют неограничивающие примеры.

На фиг. 1 показан пример выполнения вставки заявленной лопатки соплового аппарата, вид в перспективе;

на фиг. 2 показан пример выполнения заявленной лопатки соплового аппарата, содержащей вставку, показанную на фиг. 1, при этом вставка показана прозрачно внутри пера лопатки, вид сбоку;

на фиг. 3 показан пример выполнения заявленной лопатки соплового аппарата, частичный вид;

на фиг. 4 показан пример выполнения соплового аппарата в соответствии с изобретением, вид в перспективе;

на фиг. 5 показан пример выполнения газотурбинного двигателя, содержащего сопловой аппарат в соответствии с изобретением, схематичный вид в разрезе.

Осуществление изобретения

Изобретение будет описано для случая одноступенчатой турбины 6 высокого давления, содержащей сопловой аппарат 8 высокого давления (или статор) и подвижное колесо (или ротор). Однако этот пример не является ограничивающим, поскольку турбина 6 может содержать больше ступеней и изобретение может находить свое применение как в турбине 7 низкого давления, так и в компрессоре 4 (высокого или низкого давления), которые тоже содержат несколько неподвижных ступеней. Кроме того, сопловой аппарат 8 может быть моноблочным или разделенным на сектора.

Классически турбина 6 содержит одну или несколько ступеней, каждая из которых имеет сопловой аппарат 8, за которым следует ряд подвижных лопаток 3 турбины, отстоящих друг от друга в окружном направлении вокруг диска турбины 6.

Сопловой аппарат 8 отклоняет газовый поток, выходящий из камеры 5 сгорания, в сторону подвижных лопаток под соответствующим углом и с соответствующей скоростью, чтобы приводить во вращение лопатки и диск турбины 6. Этот сопловой аппарат 8 содержит множество неподвижных лопаток, расположенных в радиальном направлении относительно оси вращения Х газотурбинного двигателя и соединяющих радиально внутреннюю кольцевую полку 9а и радиально наружную кольцевую полку 9b.

Каждая лопатка 10 содержит перо 12, имеющее стенку 16 корытца и стенку 14 спинки, соединенные между собой передней кромкой 18 и задней кромкой 19. Передняя кромка 18 пера 12 соответствует входной части его аэродинамического профиля. Она обращена к газовому потоку и делит его на воздушный поток корытца, который проходит вдоль стенки 16 корытца, и на воздушный поток спинки, который проходит вдоль стенки 14 спинки. Задняя кромка 19 соответствует выходной части аэродинамического профиля, где сходятся потоки корытца и спинки.

Кроме того, сопловой аппарат 8 содержит систему охлаждения. Для этого каждая лопатка 10 содержит вставку 20, установленную в пере 12 между стенкой 16 корытца и стенкой 14 спинки. Вставка 20 содержит:

- замкнутую стенку 12, имеющую наружную поверхность 24, расположенную напротив стенки 16 корытца и стенки 14 спинки, и внутреннюю поверхность 26, противоположную наружной поверхности 24, при этом наружная поверхность 24 замкнутой стенки 12 и находящаяся напротив стенка лопатки 10 разделены воздушным зазором 30, и

- ряд сквозных отверстий 28, выполненных в замкнутой стенке 12 между наружной поверхностью 24 и внутренней поверхностью 26.

Кроме того, в замкнутой стенке 12 вставки 20 выполнен ряд углублений 25, которые выходят на наружную поверхность 24. Сквозные отверстия 28 выполнены в углублениях 25, и высоты h воздействия между сквозными отверстиями 28 и находящейся напротив стенкой лопатки 12 превышают величину воздушного зазора 30.

В варианте осуществления воздушный зазор может быть постоянным. В данном случае под воздушным зазором 30 следует понимать наименьшее расстояние между точкой наружной поверхности 24 замкнутой стенки 12 вставки 20 вокруг углублений 25 и находящейся напротив стенкой пера 12, то есть стенкой 16 корытца или стенкой 14 спинки. Воздушный зазор 30 измеряют в плоскости, параллельной плоскости, касательной к внутренней полке 9а на уровне основания пера 12, и он в основном является постоянным между внутренней полкой 9а и наружной полкой 9b.

Под высотой h воздействия следует понимать расстояние между выходом (относительно направления прохождения охлаждающего воздушного потока) сквозного отверстия 28 и внутренней стороной 15 находящейся напротив стенки пера 12, то есть стенки 16 корытца или стенки 14 спинки вдоль оси Х прохождения охлаждающего воздуха в сквозном отверстии 28.

Эта конфигурация лопатки 10 одновременно обеспечивает малый воздушный зазор 30 между пером 12 и вставкой 20 и, следовательно, позволяет сохранять эффективность принудительной конвекции во время удаления воздуха после воздействия, благодаря высоте h воздействия, увеличенной при помощи углублений 25, которые смещают выход сквозных отверстий 28 относительно наружной поверхности 24 вставки 20.

В варианте осуществления высота h воздействия составляет от 1,0 мм до 3,0 мм, предпочтительно от 1,0 мм до 2,0 мм, например, около 1,5 мм, когда воздушный зазор 30 составляет от 0,5 до 1,0 мм, предпочтительно от 0,5 до 0,8 мм, например, порядка 0,6 мм.

Периферия сквозных отверстий 28 имеет определенную максимальную ширину L. Под шириной L периферии в данном случае следует понимать расстояние между двумя параллельными прямыми (или «опорными линиями»), которые являются касательными в двух разных точках к замкнутой кривой, образованной периферией сквозного отверстия 28 на уровне углубления. При этом максимальная ширина L соответствует наибольшей ширине L периферии. Когда сквозное отверстие 28 имеет круглое сечение, максимальная ширина L равна, например, наружному диаметру круга. В варианте сквозное отверстие 28 может иметь квадратное или прямоугольное сечение, и в этом случае максимальная ширина L соответствует его диагонали.

Чтобы еще больше оптимизировать эффективность воздействия струй на внутреннюю сторону 15 пера 12, соотношение между высотой h воздействия и максимальной шириной L всех или части сквозных отверстий составляет от 2,5 до 10, предпочтительно от 2,5 до 7, еще предпочтительнее от 2,5 до 5, например, от 2,8 до 3,2. Как правило, в случае лопатки 12, замкнутая стенка 12 которой имеет толщину от 0,4 до 0,6 мм с воздушным зазором, по существу равным 0,6 мм, оптимальное соотношение между высотой h воздействия и максимальной шириной L отверстий составляет порядка 3. Такое соотношение позволяет, в частности, получить расстояние воздействия в 1,5 мм.

Углубления 25 могут иметь в основном полусферическую форму или «яйцевидную» форму или каплевидную форму. Следует отметить, что в соответствии с требуемой высотой h воздействия и толщиной наружной стенки внутренняя поверхность 26 вставки 20 может не быть плоской.

Такая форма позволяет достигать таких отношений высоты h воздействия к максимальной ширине L.

Таким образом, в примере осуществления, представленном на фиг. 1-3, воздушный зазор 30 равен 0,6 мм, замкнутая стенка лопатки 12 имеет толщину порядка 0,6 мм, тогда как требуемая высота h воздействия равна 1,5 мм. Углубления 25 получены, таким образом, за счет изменения геометрии внутренней поверхности 26 и наружной поверхности 24 замкнутой стенки 12, а не посредством выполнения выемки в указанной наружной стенке. Следовательно, внутренняя поверхность 26 замкнутой стенки 12 не является гладкой и содержит приливы 27, соответствующие углублениям 25, выполненным в наружной поверхности 24. В данном случае углубления 25 являются полусферическими: таким образом, наружная поверхность 24 замкнутой стенки 12 имеет ряд полусферических впадин, в дне которых выполнены сквозные отверстия 28, тогда как ее внутренняя поверхность 26 имеет полусферические приливы 27 соответствующей формы и размера, который выступают из указанной внутренней поверхности 26, при этом сквозные отверстия 28 выходят в вершине указанных приливов 27.

В варианте осуществления внутренняя сторона 15 стенки 14 спинки и стенки 16 корытца может содержать выступы 13, выполненные на указанной внутренней стороне 15 в направлении вставки 20, чтобы защищать струю, обдувающую внутреннюю сторону 15 пера 12, от сдвигающего потока. Выступы 13 могут, например, иметь в основном треугольное сечение или сечение в виде V, при этом вершина сечения направлена к передней кромке 18 пера 12.

Этот вариант осуществления в сочетании с оптимальными максимальной шириной L и высотой h воздействия позволяет получить эффективное и постоянное охлаждение на всем профиле пера 12.

Конфигурация вставки 20 и, в случае необходимости, выполнение выступов 13 на внутренней стороне 15 пера 12 дает существенный выигрыш в локальной эффективности охлаждения соплового аппарата 8 и возможность контролировать эффективность принудительной конвекции в воздушном зазоре 30, ограничивая при этом сдвигание выходных рядов струй рядами струй, находящимися ближе к входу. Кроме того, оптимизация всех этих параметров позволяет лучше использовать воздух, применяемый для охлаждения стенки. Это позволяет при одном и том же расходе повысить термическую эффективность (выигрыш в сроке службы) или уменьшить расход при одной и той же термической эффективности, что выражается выигрышем в производительности двигателя.

Перо 12 можно получить известным способом, например, посредством литья из соответствующего материала, такого как жаропрочный сплав на основе никеля, или из монокристаллического материала, который обладает очень хорошей жаростойкостью. В варианте, перо 12 можно получить путем селективного плавления на слое порошка при помощи пучка высокой энергии.

Вставку можно получить посредством литья или путем селективного плавления на слое порошка при помощи пучка высокой энергии. В частности, селективное плавление на слое порошка при помощи пучка высокой энергии позволяет получить вставку с меньшими затратами (по сравнению с литьем), содержащую углубления 25 (и, в случае необходимости, приливы 27) соответствующей формы. При этом наружная стенка вставки может иметь толщину, составляющую от 0,4 до 0,8 мм, например, около 0,6 мм и даже 0,4мм.


ЛОПАТКА СОПЛОВОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ, СОДЕРЖАЩАЯ ВСТАВКУ С ИЗМЕНЯЮЩЕЙСЯ ГЕОМЕТРИЕЙ
ЛОПАТКА СОПЛОВОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ, СОДЕРЖАЩАЯ ВСТАВКУ С ИЗМЕНЯЮЩЕЙСЯ ГЕОМЕТРИЕЙ
ЛОПАТКА СОПЛОВОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ, СОДЕРЖАЩАЯ ВСТАВКУ С ИЗМЕНЯЮЩЕЙСЯ ГЕОМЕТРИЕЙ
ЛОПАТКА СОПЛОВОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ, СОДЕРЖАЩАЯ ВСТАВКУ С ИЗМЕНЯЮЩЕЙСЯ ГЕОМЕТРИЕЙ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 63.
22.10.2019
№219.017.d8cb

Торсиометр для измерения деформации

Изобретение относится к торсиометру, содержащему корпус (12), в котором может поступательно перемещаться подвижный элемент (14), перемещающийся в продольном направлении под воздействием осевого давления, представляющего предназначенный для измерения момент вращения. Торсиометр отличается тем,...
Тип: Изобретение
Номер охранного документа: 0002703610
Дата охранного документа: 21.10.2019
24.10.2019
№219.017.d9b6

Система рекуперации энергии отработавших газов

Система рекуперации энергии отработавших газов по меньшей мере одного газотурбинного двигателя содержит турбину, компрессор, первый и второй теплообменники, вентилятор. Турбина установлена с возможностью вращения вокруг рекуперационного вала и выполнена с возможностью отбора, по меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002703886
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da3f

Пневматическое устройство быстрой реактивации газотурбинного двигателя, структура силовой установки многомоторного вертолета, оборудованной таким устройством, и соответствующий вертолет

Изобретение относится к устройствам быстрой реактивации газотурбинного двигателя вертолета. Устройство содержит пневматическую турбину, механически связанную с упомянутым газотурбинным двигателем для его приведения во вращение с целью обеспечения его реактивации; пневматический аккумулятор,...
Тип: Изобретение
Номер охранного документа: 0002703862
Дата охранного документа: 22.10.2019
01.11.2019
№219.017.dbfd

Ограничитель расхода

Изобретение относится к ограничителю расхода, который содержит корпус (1), содержащий вход (2) среды и выход (3) среды. Причем в указанном корпусе установлена труба (5) для циркуляции среды, содержащая группу камер, имеющих различные сечения, и соединенная с одной стороны с входом среды и с...
Тип: Изобретение
Номер охранного документа: 0002704590
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc40

Способ сбора оперативных данных летательного аппарата

Изобретение относится к области распознавания символьных данных. Технический результат заключается в повышении надежности сбора и записи данных отчета летательного аппарата. Способ сбора оперативных данных летательного аппарата (1), содержащего дисплей (2) для отображения оперативных данных...
Тип: Изобретение
Номер охранного документа: 0002704745
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc89

Газотурбиный двигатель для летательного аппарата, оснащенный автоматически активируемым центрующим элементом

Изобретение относится к авиационным газотурбинным двигателям, в частности к газотурбинным двигателям, содержащим свободную турбину, один из опорных подшипников которой вынесен в редуктор. Объектом изобретения является газотурбинный двигатель, содержащий картер, в котором расположены...
Тип: Изобретение
Номер охранного документа: 0002704585
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dd46

Камера сгорания газотурбинного двигателя, содержащая заходящую деталь с отверстием

Камера сгорания газотурбинного двигателя содержит по меньшей мере одну стенку, ограничивающую камеру сгорания и содержащую отверстие для прохождения заходящей детали. Указанная заходящая деталь содержит в своей части, находящейся внутри камеры сгорания, по меньшей мере одно отверстие,...
Тип: Изобретение
Номер охранного документа: 0002704440
Дата охранного документа: 29.10.2019
24.11.2019
№219.017.e64b

Газотурбинный двигатель, встроенный внутрь корпуса редуктора

Изобретение относится к газотурбинному двигателю для вертолета, содержащему корпус, в котором расположены газогенератор и турбина, установленные на валу мощности. Имеются средства обратимого встраивания вала мощности внутрь корпуса редуктора, в котором установлено по меньшей мере одно зубчатое...
Тип: Изобретение
Номер охранного документа: 0002706855
Дата охранного документа: 21.11.2019
29.11.2019
№219.017.e782

Силовая установка со средствами выборочного соединения

Изобретение относится к силовой установке летательного аппарата. Cиловая установка (10) содержит газотурбинный двигатель (12), винт (14), вращающуюся электрическую машину (16). Силовая установка также содержит средства (20) выборочного соединения вращающейся электрической машины (16) с винтом...
Тип: Изобретение
Номер охранного документа: 0002707488
Дата охранного документа: 26.11.2019
10.12.2019
№219.017.ebc8

Магнитогидродинамический генератор

Изобретение относится к электротехнике, к магнитогидродинамическим генераторам. Технический результат состоит в расширении эксплуатационных возможностей. Генератор (10) содержит канал (11) для рабочей среды, ограниченный первой стенкой (12) и второй стенкой (13), ионизирующее устройство (14)...
Тип: Изобретение
Номер охранного документа: 0002708386
Дата охранного документа: 06.12.2019
+ добавить свой РИД