×
01.11.2019
219.017.dcbc

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ И ХИМИЧЕСКОГО СОСТАВА ФУНКЦИОНАЛЬНЫХ МАТЕРИАЛОВ С ПОМОЩЬЮ ГЛУБОКОЙ НЕЙРОННОЙ СЕТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу определения параметров технологического процесса получения функционального материала и химического состава функционального материала. Технический результат заключается в повышении точности определения параметров термомеханической обработки и химического состава функциональных материалов. В способе в качестве нейронной сети прогнозирования используют глубокую сверточную нейронную сеть, обучение которой проводят в два этапа, на первом этапе на вход глубокой сверточной нейронной сети подают информацию о микроструктуре материалов в виде немаркированных цифровых изображений образцов функциональных и/или конструкционных материалов в количестве не менее 10 тысяч, на втором этапе на вход глубокой сверточной нейронной сети подают дополнительные данные, включающие маркированные цифровые изображения образцов функциональных материалов в количестве не менее 2 тысяч, далее на вход глубокой сверточной нейронной сети подают данные о требуемых физико-механических характеристиках функционального материала, с помощью глубокой сверточной сети рассчитывают параметры технологического режима получения и химического состава данного функционального материала.

Способ определения параметров термомеханической обработки и химического состава функциональных материалов с помощью глубокой нейронной сети

Изобретение относится к области разработки и получения функциональных материалов для машиностроения, химической отрасли, строительства и т.д. Может применяться для получения материалов с заданными физико-механическими параметрами для изготовления деталей специального назначения. Используется при разработке технологических процессов получения материалов с конкретным функциональным назначением.

Известно устройство каскадной обработки потока изображений с помощью сверточных нейронных сетей по патенту РФ на полезную модель №173468, G06T 1/40, 2017. Устройство предназначено для обработки ограниченного количества недостаточно четких изображений исследуемых объектов с приемлемой точностью, В устройстве в каждом из параллельных блоков определения обобщенных признаков веса сверток выполнены с возможностью предварительной настройки с помощью большого количества изображений из открытых источников, а затем тонкой настройки на тех изображениях, с которыми предстоит работать в качестве исходных изображений потока. Недостатком является ограниченная функциональность устройства, связанная с ограничением прогнозирования свойств исследуемого объекта, с точностью такого прогнозирования.

Известно устройство диагностирования состояния ступичного подшипника по патенту РФ на полезную модель №133300, G01M 13/04, 2013. С помощью блоков устройства производят вычисление параметров сигналов двух каналов - электрического и вибрационного, получаемых с исследуемого подшипника. Определяют максимальное значение амплитуды сигнала, среднее значение сигнала, дисперсию сигнала, стандартное отклонение, максимальное значение автокорреляционной функции. Эти параметры являются входными для многослойного персептрона (нейронной сети). Обучение нейронной сети - процесс получения весов применительно к определенному типу ступичного подшипника. При обучении используют математическую модель ступичного подшипника, изменения характеристик которого полностью контролируются. Диагностирование состояния подшипника производят путем анализа диагностических параметров, получаемых с каналов взаимного измерения электрического сопротивления трибосопряжения и вибрации ступичного подшипника с применением заранее обученной искусственной нейронной сети. На основе анализа получают информацию о состоянии диагностируемого объекта от решающего устройства. Недостатком данного устройства и способа его использования являются узкие функциональные возможности, невозможность определения оптимальных технологических режимов изготовления подшипника, улучшающих его свойства.

В качестве ближайшего аналога заявляемому техническому решению выбран патент CN на изобретение №102254057, G06N 3/08, 2011. Способ автоматического прогнозирования механических свойств тонкой пластины заключается в моделировании нейронной сети и использовании расчетного метода прогнозирования механических свойств на основе данных о микроскопической структуре и данных об изменениях микроструктуры пластины. Для осуществления способа создают нейронную сеть с незафиксированными входными и выходными узлами для создания модели прогнозирования. Для прогнозирования конечных механических свойств вводят фактические параметры технологического процесса производства, такие как время прокатки, начальную температуру прокатки, скорость прокатки, выполняют цифровое моделирование процесса. Для проверки правильности результатов прогнозирования производят расчет параметров с использованием сравнения средней комнатной температуры с температурой технологической линии на основе обученной нейронной сети. Недостатком является невысокая точность прогнозирования, необходимость проведения сравнительного исследования с целью повышения точности прогнозирования, невозможность получения данных для выбора оптимальных параметров технологического процесса получения функционального материала для изготовления тонкостенной пластины.

Техническим результатом заявляемого изобретения является повышение точности определения параметров термомеханической обработки и химического состава функциональных материалов, т.е., материалов с настраиваемыми для конкретных целей физическими и химическими свойствами.

Технический результат достигается тем, что в способе определения параметров технологического процесса получения функционального материала и химического состава функционального материала, включающем обучение нейронной сети прогнозирования, введение информации о микроструктуре материала, введение дополнительных данных для повышения точности прогнозирования, согласно изобретению, в качестве нейронной сети прогнозирования используют глубокую сверточную нейронную сеть, обучение которой проводят в два этапа, на первом этапе на вход глубокой сверточной нейронной сети подают информацию о микроструктуре материалов в виде немаркированных цифровых изображений образцов функциональных и/или конструкционных материалов, в количестве не менее 10 тысяч, на втором этапе на вход глубокой сверточной нейронной сети подают дополнительные данные, включающие маркированные цифровые изображения образцов функциональных материалов, в количестве не менее 2 тысяч, далее на вход глубокой сверточной нейронной сети подают данные о требуемых физико-механических характеристиках функционального материала, с помощью глубокой сверточной сети рассчитывают параметры технологического режима получения и химического состава данного функционального материала.

Технический результат обеспечивается за счет того, что для прогнозирования и расчетов свойств и режимов получения функциональных материалов используют сверточную глубокую нейронную сеть. Это позволяет использовать сверхточные слои в архитектуре сети для повышения точности прогнозирования в отличие от аналогов, использующих сети типа MLP (персептрон). Особенностью работы с функциональными материалами, в отличие от работы с конструкционными материалами является малое количество данных для введения в программу прогнозирования. Это связано со спецификой создания таких материалов. Функциональные материалы создают для целей изготовления из них определенных изделий, узлов, деталей, элементов, обладающих необходимыми заданными конкретными свойствами. В отличие от использования конструкционных материалов, где исходя из свойств материала, получают свойства изготавливаемого из него изделия, функциональные материалы производят с определенными настраиваемыми физическими и химическими свойствами для создания конкретного изделия, например, специального высокопрочного стержня. Создание оптимального функционального материала требует усиления или подавления каких-либо свойств в уже имеющемся конструкционном материале. Производство таких материалов характеризуется малыми объемами их изготовления. Для повышения точности прогнозирования свойств материала с небольшим массивом входных данных проводят обучение сверточной глубокой нейронной сети в два этапа. Для расширения массива данных сначала проводят обучение, подавая на вход сети цифровые снимки шлифов как конструкционных, так и функциональных материалов в достаточном количестве. Минимальное их заводимое количество - не менее 10 тысяч снимков шлифованных срезов образцов. Это позволяет провести предварительное обучение нейронной сети. Далее для дальнейшего повышения точности проводят тонкую настройку программы прогнозирования путем дальнейшего обучения глубокой нейронной сети с применением маркированных снимков шлифов уже именно функциональных материалов. Предварительное обучение нейронной сети (pre-training) с помощью алгоритма «без учителя», т.е., на немаркированных снимках значительно повышает сходимость последующего завершающего обучения, так называемой тонкой настройки (fine tuning). Таким образом повышается точность всего процесса прогнозирования. Для второго этапа - этапа тонкой настройки, формируют обучающее множество, включающее не менее 2 тысяч элементов. При этом в маркировку снимков образцов входит информация, которая потом будет подана на вход сети и получена на выходе. При подаче на обучение сети на втором этапе меньшего количества снимков образцов требуемая точность прогнозирования не достигается.

Способ прогнозирования параметров термомеханической обработки и химического состава функционального материала отличается от прямого способа прогнозирования. При прямом способе на вход глубокой сверточной нейронной сети подают цифровые снимки микрошлифов различных масштабных уровней. Снимки выполняют оптическим и электронным микроскопами с разными увеличениями. На выходе из глубокой сверточной нейронной сети получают прогнозируемые данные физико-механических свойств исследуемого материала. Для решения данной задачи глубокую сверточную нейронную сеть обучают с помощью алгоритмов машинного обучения на множестве данных, полученных для известных металлов и сплавов. При таком способе прогнозирования на вход сети подают уже измеренные каким-либо способом параметры, потенциально влияющие на физико-механические свойства материала. Заявляемый же способ относится к прогнозированию свойств функциональных материалов, которые изготавливают в небольшом количестве. Особенностью такого прогнозирования является обучение нейронной сети в условиях ограниченного количества образцов для обучения.

Заявляемый способ осуществляют следующим образом.

Проводят обучение нейронной сети прогнозирования, в качестве которой используют глубокую сверточную нейронную сеть, в два этапа. На первом этапе проводят предварительное обучение сети «без учителя», т.е., на вход сети подают большое количество немаркированных цифровых снимков шлифов образцов разнообразных конструкционных и функциональных материалов, в том числе металлов. Количество снимков шлифов должно быть не менее 10 тысяч, оптимальное количество - 60 тысяч снимков. Снимки выполнены на разных масштабных уровнях оптическими и электронными микроскопами с различными увеличениями. Сеть обучается за счет большого количества снимков шлифов. Далее проводят второй этап обучения - тонкую настройку нейронной сети «с учителем», т.е., на маркированных данных с помощью алгоритма обратного распространения ошибки. Для этого изготавливают небольшое количество шлифов образцов тестируемого материала. Производят их съемку оптическими и электронными приборами в разных масштабах и получают их цифровые снимки. Формируют обучающее множество, состоящее не менее, чем из 2 тысяч элементов. В обучающее множество входят:

1) цифровые снимки шлифов образцов;

2) предварительно измеренные физико-механические характеристики материалов этих этих образцов;

3) параметры процесса термомеханической обработки этих образцов;

4) химический состав образцов.

Подают данное обучающее множество на вход глубокой сверточной нейронной сети и с помощью алгоритма обратного распространения ошибки выполняют тонкую настройку программы.

Далее на вход глубокой сверточной нейронной сети подают цифровые снимки шлифа тестируемого материала, выполненные оптическими и электронными приборами в разных масштабах. Вместе с данными снимками на вход сети подают требуемые физико-механические характеристики необходимого материала. После чего с помощью глубокой сверточной нейронной сети рассчитывает параметры процесса термомеханической обработки и химический состав сплава для получения необходимого искомого материала и выдает полученные результаты. Например, на вход сети подают снимки шлифа образца из легированной конструкционной стали 38Х2Н5МА и значение физико-механической характеристики, которую нужно получить в конечном материале, в частности, заданное значение предела текучести. Глубокая нейронная сеть производит расчет и выдает информацию о требуемых необходимых изменениях химического состава стали 38Х2Н5МА и выдает информацию о необходимых параметрах ее термомеханичекской обработки для достижения нужного значения предела текучести. Таким образом, в результате изменении состава стали и технологии ее производства получают новый функциональный материал.

В результате использования вышеописанного двухстадийного обучения глубокой сверточной нейронной сети получают точность прогнозирования - 90%, в отличие от точности прямого прогнозирования функциональных материалов, составляющей 60%.

Таким образом, заявляемое изобретение позволяет повысить эффективность и точность определения параметров термомеханической обработки и химического состава функциональных материалов.

Способ определения параметров технологического процесса получения функционального материала и химического состава функционального материала, включающий обучение нейронной сети прогнозирования, введение информации о микроструктуре материала, введение дополнительных данных для повышения точности прогнозирования, отличающийся тем, что в качестве нейронной сети прогнозирования используют глубокую сверточную нейронную сеть, обучение которой проводят в два этапа, на первом этапе на вход глубокой сверточной нейронной сети подают информацию о микроструктуре материалов в виде немаркированных цифровых изображений образцов функциональных и/или конструкционных материалов в количестве не менее 10 тысяч, на втором этапе на вход глубокой сверточной нейронной сети подают дополнительные данные, включающие маркированные цифровые изображения образцов функциональных материалов в количестве не менее 2 тысяч, далее на вход глубокой сверточной нейронной сети подают данные о требуемых физико-механических характеристиках функционального материала, с помощью глубокой сверточной сети рассчитывают параметры технологического режима получения и химического состава данного функционального материала.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 59.
18.05.2019
№219.017.539a

Способ оценки состояния призабойной зоны пласта

Изобретение относится к нефтяной промышленности и может найти применение при разработке продуктивного пласта и определении параметров продуктивного коллектора. Способ оценки состояния призабойной зоны пласта включает эксплуатацию скважины на установившемся режиме перед проведением...
Тип: Изобретение
Номер охранного документа: 0002687828
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c99

Способ роторного бурения скважин модульной управляемой системой малого диаметра

Изобретение относится к направленному бурению нефтяных и газовых скважин. Способ роторного бурения скважин модульной управляемой системой малого диаметра включает бурение скважины или бокового ствола с наклонным пространственно-ориентированным профилем в продуктивном пласте с применением...
Тип: Изобретение
Номер охранного документа: 0002687998
Дата охранного документа: 17.05.2019
04.06.2019
№219.017.72ba

Датчик вибраций

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения объемного напряженного состояния, и может быть использовано для диагностики давления, вибраций и дефектоскопии композитов в медико-биологических исследованиях, гидроакустике,...
Тип: Изобретение
Номер охранного документа: 0002690416
Дата охранного документа: 03.06.2019
07.06.2019
№219.017.750a

Способ производства трубных изделий

Изобретение относится к обработке металлов давлением и предназначено для производства трубных изделий волочением. Способ включает предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через рабочий канал монолитной волоки. Снижение...
Тип: Изобретение
Номер охранного документа: 0002690796
Дата охранного документа: 05.06.2019
07.06.2019
№219.017.7529

Пьезоактюатор (варианты)

Изобретение относится к области изготовления устройств точного позиционирования на основе пьезоэлектрических и пьезомагнитных (магнитострикционных) актюаторов, в частности, в авиации для управления геометрией аэродинамических профилей лопастей вертолетов. Технический результат: увеличение...
Тип: Изобретение
Номер охранного документа: 0002690732
Дата охранного документа: 05.06.2019
09.06.2019
№219.017.7653

Входное устройство и способ его изготовления

Изобретение относится к экспериментальным установкам по проведению аэроакустических исследований турбовентиляторных двигателей летательных аппаратов. Входное устройство представляет собой плавно расширяющийся цилиндрический канал, состоящий из однотипных, цельных, соединенных между собой...
Тип: Изобретение
Номер охранного документа: 0002690968
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.810a

Модульная управляемая система роторного бурения скважин малого диаметра

Изобретение относится к буровой технике и может быть использовано при строительстве наклонно-направленных и горизонтальных скважин на труднодоступных месторождениях, в том числе Арктическом шельфе. Модульная управляемая система роторного бурения скважин малого диаметра включает модуль...
Тип: Изобретение
Номер охранного документа: 0002691194
Дата охранного документа: 11.06.2019
27.07.2019
№219.017.b985

Соединительное устройство для монтажа и подключения светильника наружного освещения

Изобретение относится к области светотехники, а именно к соединительным устройствам для светильников наружного освещения, и может быть использовано для быстрого монтажа-демонтажа светильников к кронштейнам и одновременного их подключения-отключения к электрической части осветительной сети....
Тип: Изобретение
Номер охранного документа: 0002695631
Дата охранного документа: 25.07.2019
27.07.2019
№219.017.b9c3

Акустическая плита

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях промышленности при шумоглушении производственного оборудования или помещений методом звукопоглощения. Акустическая плита содержит гладкую и перфорированную...
Тип: Изобретение
Номер охранного документа: 0002695723
Дата охранного документа: 25.07.2019
15.08.2019
№219.017.bfa6

Способ нанесения пироуглеродного покрытия на литейные керамические формы

Изобретение относится к литейному производству, а именно к способам нанесения пироуглеродных покрытий на литейные керамические формы для литья преимущественно титановых и других химически активных сплавов. Способ нанесения пироуглеродного покрытия на литейные керамические формы включает...
Тип: Изобретение
Номер охранного документа: 0002697204
Дата охранного документа: 13.08.2019
Показаны записи 1-1 из 1.
10.05.2018
№218.016.4159

Способ контроля эксплуатации мусорного контейнера

Изобретение относится к дистанционному контролю состояния мусорных контейнеров за частотой уборки и объемом собранных отходов и обеспечивает повышение точности определения периода времени заполнения контейнера и улучшение контроля за качеством обслуживания контейнера. В способе датчик уровня...
Тип: Изобретение
Номер охранного документа: 0002649150
Дата охранного документа: 30.03.2018
+ добавить свой РИД