×
01.11.2019
219.017.dc43

Результат интеллектуальной деятельности: Буровой раствор для строительства скважин в неустойчивых глинистых и несцементированных грунтах и способ его получения

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к буровому раствору для строительства скважин в неустойчивых глинистых и несцементированных грунтах и способу его получения и может быть использована в области трубопроводного транспорта, в частности, при строительстве подводных переходов трубопроводов в неустойчивых грунтах, таких как песок, гравийно-галечниковые грунты, глины. Технический результат – возможность получения скважины с устойчивыми стенками в зоне залегания неустойчивых глинистых и несцементированных грунтов. Буровой раствор для строительства скважин в неустойчивых глинистых и несцементированных грунтах включает, мас.%: монтмориллонитовый глинопорошок 6; полианнионную целлюлозу 0,4; водку остальное, при этом величина коэффициента пластичности раствора равна 2677 с при динамическом напряжении сдвига 830 дПа. В способе получения указанного выше бурового раствора готовят глинистую суспензию путем перемешивания воды и монтмориллонитового глинопорошка в течение 1 ч, затем добавляют полианнионную целлюлозу и перемешивают в течение 30 мин. 2 н.п. ф-лы, 2 табл., 9 пр.

Группа изобретений относится к буровому раствору для строительства скважин в неустойчивых глинистых и несцементированных грунтах и способу его получения.

Группа изобретений может быть использована в области трубопроводного транспорта, в частности, при строительстве подводных переходов трубопроводов в неустойчивых грунтах (песок, гравийно-галечниковые грунты, глины).

Известен буровой раствор на основе водомасляной эмульсии, включающий бентонитовый глинопорошок, каустическую соду, карбоксиметилцеллюлозу (КМЦ), многофункциональные поверхностно-активные вещества ПАВ, пеногаситель, полимер и воду (заявка 2002112790/032002112790/03 от 26.08.2002). Буровой раствор содержит КМЦ низкой вязкости, в качестве многофункциональных ПАВ - ИКЛУБ и ИКД, в качестве пеногасителя - ИКДЕФОМ, в качестве полимера - акриламидсодержащий полимер, анионный полиэлектролит ИКСТАБ или амфолитный полиэлектролит ГТИНДРИЛ и дополнительно - кальцинированную соду при следующем соотношении ингредиентов, кг на 1 м3 бурового раствора: бентонитовый глинопорошок - 30-75, кальцинированная сода - 1-2,5, каустическая сода - 0,2-0,7, КМЦ низкой вязкости - 2,5-6,8, ИКЛУБ - 3-9, ИКД - 0,5-3, ИКДЕФОМ - 0,1-0,25, указанный акриламидсодержащий полимер - 2,6-4,5, вода - остальное.

К недостаткам известного раствора относится большой расход химреагентов, обусловленная этим его высокая стоимость и низкая мобильность управления свойствами.

Наиболее близким по технической сущности к заявляемому раствору является буровой раствор (заявка: 2005137762/03, опубл. 10.06.2007) для строительства переходов под естественными и искусственными преградами методом горизонтально-направленного бурения, включающий глину, понизитель фильтрации, модифицирующую добавку и воду, отличающийся тем, что, в качестве модифицирующей добавки он содержит реагент ФК-1 при следующем соотношении компонентов, мас. %: глина 1,0-2,9; понизитель фильтрации 0,2-0,4; реагент ФК-1 3,1-5,0; вода - остальное. Недостатком известного состава является большое содержание модифицирующей добавки реагента ФК-1, что сказывается на стоимости бурового раствора.

Техническим результатом группы изобретений является получение состава бурового раствора, фильтрационные свойства которого позволяют получить скважину с устойчивыми стенками в зоне залегания неустойчивых глинистых и несцементированных грунтов.

Указанный технический результат достигается за счет того, что буровой раствор для строительства скважин в неустойчивых глинистых и несцементированных грунтах, согласно техническому решению, включает бентонитовый глинопорошок, водорастворимый полимер или водорастворимые полимеры и воду, при этом величина коэффициента пластичности раствора находится в диапазоне от 800 с-1 до 3000 с-1 при динамическом напряжении сдвига более 300 дПа и следующем соотношении компонентов, мас.%:

- бентонитовый глинопорошок - 3-8;

- водорастворимые полимеры - 0,3- 0,5;

- вода - остальное.

В части способа получения указанного бурового раствора технический результат достигается за счет того, что готовят глинистую суспензию путем перемешивания воды и бентонитового глинопорошка в течение 1 часа, затем добавляют водорастворимый полимер или водорастворимые полимеры и перемешивают в течение 30 мин.

Заявляемый качественный и количественный состав компонентов бурового раствора со следующими реологическими параметрами: коэффициент пластичности в диапазоне от 800 до 3000 с-1, динамическое напряжение сдвига (далее - ДНС) более 300 дПа, позволяет выносить шлам разбуренных грунтов, способен обеспечить устойчивость ствола скважины в условиях залегания глиносодержащих грунтов и управлять фильтрационными свойствами несцементированных грунтов.

В составе бурового раствора используются следующие соединения:

- в качестве глины используют бентонитовый глинопорошок марки Б-1 - Б-3 по ГОСТ 25795-83 «Сырье глинистое в производстве глинопорошков для производства буровых растворов».

- в качестве регулятора реологических свойств используют водорастворимые полимеры - биополимеры и синтетические полимеры, например, полимер полианнионная целлюлоза, карбоксиметилцеллюлоза (далее - КМЦ), ксантановая смола, гидролизованный полиакрил амид и др.

Буровой раствор получают механическим смешиванием компонентов в заявленных пределах содержания. Сначала готовят глинистую суспензию путем перемешивания воды и бентонитового глинопорошка (5-8%) в течение 1 часа. Добавляют водорастворимые полимеры, например, гидролизованный полиакриламид (0,3-0,5%), перемешивают 30 мин. После получения однородного раствора определяют его свойства. Параметры, полученных буровых растворов, приведены в табл.1.

Система обладает малокомпонентным составом, поэтому отличается мобильностью управления ее свойствами.

Все измерения параметров буровых растворов допускается проводить по методикам ISO 10414-1:2008 [1].

В практической деятельности для обеспечения кольматации проницаемых грунтов нередко применяются буровые растворы, состоящие из модифицированного глинопорошка низкого качества на основе гидрослюдистых глин с меньшим выходом раствора.

При одинаковой концентрации в зависимости от вида глинопорошка, применяемого для получения бурового раствора, вязкость раствора меняется в широких пределах. Диапазон изменения свойств бурового раствора зависит от качества применяемой глины, ее коллоидных свойств, длительности гидратации, степени перемешивания, наличия электролитов, органических добавок. Влияние этих факторов затрудняет определение критериев фильтрации бурового раствора в пористую среду.

Основными реологическими параметрами, которые характеризуют буровой раствор, являются динамическое напряжение сдвига, пластическая вязкость и их производная - коэффициент пластичности.

Динамическое напряжение сдвига характеризует прочностное сопротивление бурового раствора течению и обусловлено прочностью водородных связей и индукционным периодом их образования. Величина пластической вязкости характеризует способность дискретной среды уплотняться. Коэффициент пластичности представляет собой отношение предельного динамического напряжения сдвига к пластической вязкости. Поэтому коэффициент пластичности отражает прочность взаимосвязей между компонентами раствора в процессе движения и является физической характеристикой прочности и скорости восстановления связей в структуре раствора.

Изобретение поясняется с помощью табл. 2, в которой приведены реологические параметры буровых растворов и состояние образцов мелкого песка после фильтрации глинистых суспензий. Составы растворов приведены в прилагаемой табл. 2. Состав растворов приведен в мас. %, что соответствует количеству реагентов в граммах, необходимых для приготовления 100 г раствора.

В табл. 2 приняты следующие сокращения и обозначения: КП - коэффициент пластичности; ПВ - пластическая вязкость; ДНС - динамическое напряжение сдвига; ПФ - показатель фильтрации; ПБР - полимерный бентонитовый раствор.

Пример 1. Из 93,65 г воды (93,65%) и 6 г глины (6%) (Серпуховского глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. Добавляют водорастворимый полимер, например, карбоксиметилцеллюлозу в количестве 0,2 г (0,2%) перемешивают 30 мин, затем вводят гидролизованный полиакриламид в количестве 0,15 г (0,15%) и перемешивают 15 мин. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Пример 2. Из 95 г воды (95%) и 5 г глины (5%) (Серпуховского глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Пример 3. Из 96 г воды (96%) и 4 г глины (4%) (Монтмориллонитового глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Пример 4. Из 96 г воды (96%) и 4 г глины (4%) (Серпуховского глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Пример 5. Из 95 г воды (95%) и 5 г глины (5%) (Монтмориллонитового глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Пример 6. Из 94,85 г воды (94,85%) и 6 г глины (6%) (Монтмориллонитового глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. Добавляют водорастворимый полимер, например, ксантановую смолу в количестве 0,15 г (0,15%) перемешивают 30 мин. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Пример 7. Из 93,7 г воды (93,7%) и 6 г глины (6%) (Серпуховского глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. Добавляют водорастворимый полимер, например, ксантановую смолу в количестве 0,3 г (0,3%) перемешивают 30 мин. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Пример 8. Из 93,65 г воды (93,65%) и 6 г глины (6%) (Монтмориллонитового глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. Добавляют водорастворимый полимер, например, карбоксиметилцеллюлозу в количестве 0,2 г (0,2%) перемешивают 30 мин, затем вводят гидролизованный полиакриламид в количестве 0,15 г (0,15%) и перемешивают 15 мин. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Пример 9. Из 93,6 г воды (93,6%) и 6 г глины (6%) (Монтмориллонитового глинопорошка в расчете на сухой продукт) при перемешивании в течение 1 часа готовят глинистую суспензию. Добавляют водорастворимый полимер, например, полимер полианнионную целлюлозу в количестве 0,4 г (0,4%) перемешивают 30 мин. После чего замеряют все параметры полученной суспензии. Результаты полученных параметров приведены в табл. 2.

Результаты проведенных исследований показали, что значение коэффициента пластичности в границах от 800 с-1 до 2677 с-1 (п. 6-9 табл. 2) обеспечивает прохождение процесса фильтрации в проницаемые каналы грунта с сохранением сплошности структуры бурового раствора и насыщением порового пространства глинистой составляющей с закреплением образцом из мелкого песка. Поддержание высоких значений коэффициента пластичности увеличивает транспортирующую способность потока, а также гидродинамическое давление струй бурового раствора, выходящих из насадок долота, что обеспечивает более эффективное разрушение грунта на забое и рост механической скорости бурения.

При значениях коэффициента пластичности в границах от 333 до 800 с-1 (п. 2-5 табл. 2) фильтрация бурового раствора происходила на не полную длину образца из мелкого песка, образцы при этом обладали малой прочностью.

При значениях коэффициента пластичности 289 с-1 (п. 1 табл. 2) фильтрация бурового раствора в образцы из мелкого песка не происходила, образец был разрушен.

Источник поступления информации: Роспатент

Показаны записи 91-100 из 150.
26.05.2019
№219.017.6142

Способ получения депрессорной присадки in situ в процессе трубопроводного транспорта высокопарафинистой нефти, обработанной противотурбулентной присадкой

Изобретение относится к способу получения депрессорной присадки in situ в процессе трубопроводного транспорта высокопарафинистой нефти. Способ получения депрессорной присадки in situ заключается в том, что через дозирующее устройство в поток перекачиваемой нефти вводят противотурбулентную...
Тип: Изобретение
Номер охранного документа: 0002689113
Дата охранного документа: 24.05.2019
30.05.2019
№219.017.6bc5

Способ компаундирования нефтей и система его осуществления

Изобретение относится к области трубопроводного транспорта, а именно к способам компаундирования нефти с различными физико-химическими свойствами, в том числе при обеспечении транспортировки высокопарафинистой, высоковязкой нефти и нефти с высоким содержанием серы. В частности, предложена...
Тип: Изобретение
Номер охранного документа: 0002689458
Дата охранного документа: 28.05.2019
30.05.2019
№219.017.6bd2

Способ пенной атаки при тушении пожаров в резервуарном парке

Настоящее изобретение относится к области пожарной безопасности, а именно к пенной атаке при тушении пожаров в резервуарном парке (РП) для хранения нефти и нефтепродуктов. Способ пенной атаки при тушении пожаров в резервуарном парке, заключающийся в подаче раствора из пенообразователя типа AFFF...
Тип: Изобретение
Номер охранного документа: 0002689450
Дата охранного документа: 28.05.2019
31.05.2019
№219.017.7184

Способ гидродинамической очистки внутренней поверхности технологических трубопроводов нефте- и нефтепродуктоперекачивающих станций

Изобретение относится к области трубопроводного транспорта, а именно к способам очистки внутренней поверхности технологических трубопроводов объектов магистрального трубопроводного транспорта нефти и нефтепродуктов от асфальтосмолопарафиновых отложений (АСПО) для восстановления нормативного...
Тип: Изобретение
Номер охранного документа: 0002689629
Дата охранного документа: 28.05.2019
09.06.2019
№219.017.762b

Способ определения сигнала от стенки трубы по данным вип cd статистики энергетических линий

Использование: для выявления дефектов трубопровода по данным ультразвукового внутритрубного дефектоскопа. Сущность изобретения заключается в том, что для анализа отраженных от стенки трубопровода ультразвуковых сигналов формируют частотную карту откликов отраженных от внутренней стенки...
Тип: Изобретение
Номер охранного документа: 0002690975
Дата охранного документа: 07.06.2019
09.06.2019
№219.017.7638

Устройство для измерения внутреннего профиля трубопровода

Изобретение относится к области неразрушающего контроля технического состояния трубопроводов путем пропуска внутритрубного устройства. Технический результат: повышение точности диагностических данных по измерению внутреннего профиля за счет защиты от поперечных нагрузок, приводящих к...
Тип: Изобретение
Номер охранного документа: 0002690973
Дата охранного документа: 07.06.2019
02.07.2019
№219.017.a2a6

Взрывозащищенное внутритрубное устройство

Изобретение относится к области контроля трубопроводов, в частности к обеспечению защиты внутритрубного устройства и трубопровода от возможного взрыва во время диагностического пропуска внутритрубного устройства в трубопроводе. Изобретение включает по меньшей мере одну секцию, которая содержит...
Тип: Изобретение
Номер охранного документа: 0002692875
Дата охранного документа: 28.06.2019
02.07.2019
№219.017.a2cd

Носитель датчиков дефектоскопа внутритрубного ультразвукового

Изобретение относится к устройствам контроля технического состояния магистральных нефтепроводов, нефтепродуктопроводов неразрушающими методами путем пропуска внутри обследуемого трубопровода внутритрубного ультразвукового дефектоскопа. Носитель датчиков содержит корпус, на переднем конце...
Тип: Изобретение
Номер охранного документа: 0002692870
Дата охранного документа: 28.06.2019
02.07.2019
№219.017.a320

Носитель датчиков внутритрубного ультразвукового дефектоскопа

Заявляемое изобретение относится к области внутритрубной диагностики технического состояния трубопроводов большой протяженности. Носитель датчиков содержит корпус, на переднем и заднем концах которого размещены манжеты, между которыми расположены конус и диск. Между конусом и диском установлены...
Тип: Изобретение
Номер охранного документа: 0002692869
Дата охранного документа: 28.06.2019
02.07.2019
№219.017.a326

Носитель датчиков дефектоскопа внутритрубного ультразвукового

Изобретение относится к устройствам контроля технического состояния магистральных нефтепроводов, нефтепродуктопроводов неразрушающими методами путем пропуска внутри обследуемого трубопровода внутритрубного ультразвукового дефектоскопа. Измерительная система носителя датчиков содержит держатели,...
Тип: Изобретение
Номер охранного документа: 0002692868
Дата охранного документа: 28.06.2019
Показаны записи 1-3 из 3.
09.11.2018
№218.016.9c0b

Способ укрепления несцементированных грунтов при строительстве методом наклонно-направленного бурения

Изобретение относится к области строительства переходов трубопроводов через естественные и искусственные препятствия методом наклонно-направленного бурения в несцементированных грунтах. Технический результат - увеличение прочности стенки скважины, необходимое для протаскивания трубопровода в...
Тип: Изобретение
Номер охранного документа: 0002671882
Дата охранного документа: 07.11.2018
02.10.2019
№219.017.cf4e

Полимерсодержащий реагент для цементно-полимерного раствора

Изобретение относится к реагентам для получения цементно-полимерного раствора. Реагент для полимерцементного раствора содержит, мас.%: эпоксидная смола - 11-20 и триэтиленгликоль - 80-89. Полимерсодержащий реагент на основе эпоксидной смолы обеспечивает повышение прочности получаемого...
Тип: Изобретение
Номер охранного документа: 0002700125
Дата охранного документа: 12.09.2019
31.07.2020
№220.018.39f9

Раствор для строительства подводных переходов трубопроводов методом горизонтально-направленного бурения щитом с использованием тоннелепроходческого комплекса в глинистых грунтах (варианты)

Группа изобретений относится к растворам, применяемым в качестве промывочных жидкостей для строительства подводных переходов трубопроводов в глинистых грунтах методом горизонтально-направленного бурения щитом с использованием тоннелепроходческого комплекса. Раствор включает капсулирующий...
Тип: Изобретение
Номер охранного документа: 0002728426
Дата охранного документа: 29.07.2020
+ добавить свой РИД