×
26.10.2019
219.017.dae8

Результат интеллектуальной деятельности: Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава

Вид РИД

Изобретение

Аннотация: Изобретение относится к области метрологии и предназначено для определения нагрузок (вертикальных и боковых сил), воздействующих на поверхность катания и боковую грань головки рельса при его контактном взаимодействии с колесом подвижного состав. Сущность: осуществляют установку в четырех зонах шейки рельса тензорезисторов и подключение их к входам измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов. При градуировке дополнительно измеряют прогиб рельса, характеризующий изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, изгибающего момента, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом. Технический результат: исключение влияния на результаты измерений вертикальных и боковых сил неопределенности жесткости подрельсового основания, тем самым повышая точность измерений. 6 табл., 3 ил.

Изобретение относится к области метрологии и предназначено для определения нагрузок (вертикальных и боковых сил), воздействующих на поверхность катания и боковую грань головки рельса при его контактном взаимодействии с колесом подвижного состава.

Известен способ (см. Вериго М.Ф., Коган А.Я. Взаимодействие пути и подвижного состава. / Под ред. М.Ф. Вериго. - М.: Транспорт, 1986. с. 490), заключающийся в том, что располагают пару тензорезисторов симметрично с двух сторон в месте с минимальной толщиной шейки рельса, включают тензорезисторы в схему моста Уинстона таким образом, чтобы ток в диагонали моста был пропорционален абсолютному значению суммы их деформаций, по которым определяют вертикальную силу от колеса на рельс, дополнительно устанавливают две пары тензорезисторов, которые располагают сверху и снизу в местах с одинаковой толщиной шейки, тензорезисторы включают в мостовую схему Уинстона таким образом, чтобы ток в диагонали моста был пропорционален разности изгибающих моментов, затем измеряют вертикальные и боковые силы, воздействующие на рельс, используя их численные зависимости от суммы деформаций и разностей изгибающих моментов, причем необходимые численные зависимости получают, нагружая рельс вертикальными и боковыми силами разного значения и для каждого значения сил фиксируя значения суммы деформаций и разности изгибающих моментов (принят за аналог).

Недостатком данного технического решения является зависимость точности измерения вертикальной и боковой сил от качества наклейки тензорезисторов. Поэтому при изменении внешних условий или обнаружении погрешностей установки тензорезисторов на рельс требуется их демонтаж и повторная установка, что приводит к дополнительным затратам материальных и временных ресурсов, а также отсутствует возможность тарировки тензометрической схемы для устранения погрешности расположения тензорезисторов на рельсе, компенсации изгиба рельса в вертикальной плоскости, вызванного изменением жесткости подрельсового основания.

Известен способ (см. патент РФ № 2623665 МПК G01L 5/16, опубл. 28.06.2017) измерения трех компонентов нагрузки в сечении рельса при контактном, взаимодействии с колесом железнодорожного подвижного состава, включающий электрическое соединение наклеенных в зонах шейки рельса тензорезисторов в измерительные мосты, подключение мостов к входу измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов и систематических погрешностей, визуальное представление результатов измерения, причем тензорезисторы, наклеенные в четырех зонах шейки рельса, соединяют в три измерительных моста, каждый мост подключают к отдельному измерительному каналу тензометрической аппаратуры, градуировку выполняют по трехфакторному плану эксперимента комбинациями входных факторов - вертикальной силы, боковой силы и опрокидывающего момента, градуировочные коэффициенты определяют умножением матрицы плана эксперимента на матрицу правую обобщенную обратную к матрице отклика, систематические погрешности измерений определяют как разницу между приложенными и восстановленными по отклику значениями факторов плана, результаты измерения представляют в виде сочетания восстановленного по отклику значения входного фактора и максимального значения систематической погрешности, полученной при градуировке (принят за прототип).

Недостатком способа, принятого за прототип, является невысокая точность измерений из-за нелинейности подрельсового основания, когда жесткость зависит от значения вертикальной силы, т.е. возникает необходимость при выполнении измерений обеспечить неизменность жесткости подрельсового основания, равной жесткости реализованной при градуировке. В градуировочных коэффициентах не учитывается поперечный изгибающий момент, вызывающий прогиб рельса в вертикальной плоскости.

Техническая задача изобретения - повышение точности измерений за счет корректировки результатов с учетом изменения жесткости подрельсового основания и градуировки измерительных каналов вертикальной силой с различной жесткостью подрельсового основания.

Поставленная задача решается за счет того, что в четырех зонах шейки рельса устанавливают тензорезисторы и подключают их ко входам измерительных каналов тензометрической аппаратуры, проводят градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов, причем при градуировке дополнительно измеряют прогиб рельса, по которому вводят поправки на изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, эксцентриситета приложения вертикальной силы, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом.

На фиг. 1 изображены рельс и его поперечное сечение с наклеенными тензорезисторами и воздействующие факторы, на фиг. 2 - схема приложения нагрузки на рельс без прогиба в вертикальной плоскости, фиг. 3 - схема приложения нагрузки с прогибом в вертикальной плоскости.

Предложенный способ был реализован следующим образом. На рельс 5 типа Р65 в сечении А-А в четырех зонах шейки рельса на высоте от подошвы 45 мм и 129 мм с двух сторон шейки рельса устанавливали тензорезисторы 1, 2, 3, 4 типа ПКС-12-200, зарегистрированного в Государственном реестре средств измерений № 57245-14. Тензорезисторы подключали к входам измерительных каналов быстродействующей тензометрической системе «Динамика-3» (зарегистрирована в Государственном реестре средств измерений за № 66973-17). Градуировку проводили по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, эксцентриситета приложения вертикальной силы, боковой силы и прогиба рельса. Для измерения прогиба рельса в вертикальной плоскости на шейку рельса наклеивали ориентированную вертикально линейку 6 с диапазоном измерений от 0 до 150 мм и ценой деления, равной 0,5 мм. На расстоянии 2000 мм от рельса располагали лазерный уровень 7, луч 8 которого направляли на отметку линейки 0 мм. Прогиб рельса р в вертикальной плоскости определяли по смещению лазерного луча относительно отметки 0 мм линейки. На рельс последовательно воздействовали четырьмя факторами:

I-ый фактор - вертикальная сила Fν=100 кН без эксцентриситета с прогибом р;

II-ой фактор - изгибающий момент, вызванный эксцентриситетом вертикальной силы Fν=100 кН, эксцентриситет е=10 мм;

III-ий фактор - вертикальная сила Fν=100 кН и боковая сила Fb,=25 кН;

IV-ый фактор - вертикальная сила Fν=100 кН без эксцентриситета и без прогиба рельсошпальной решетки в вертикальной плоскости. Для исключения прогиба рельсошпальной решетки под рельс на расстоянии 0,5 м от точки приложения силы подкладывались упоры, препятствующие смещению рельса в вертикальной плоскости.

При воздействии каждого фактора определяли приращения сигналов в тензометрических каналах, которые представлены в виде матрицы приращений размерностью 4×4:

где

i - номер тензометрического канала, номер строки, j - номер фактора, номер столбца.

Значения приращений ai,j сигналов в тензометрических каналах, полученные экспериментально при воздействии I-IV факторов в процессе градуировки, приведены в таблице 1.

Измеренное экспериментальное значение прогиба рельса при воздействии фактором I, II, III составило р=4 мм. При воздействии фактора IV значение прогиба не превышало 0,5 мм.

Используя данные о приращениях в тензометрических каналах при градуировке (таблица 1), определяли градуировочные коэффициенты. Для вертикальной силы градуировочные коэффициенты определили делением приращений сигналов в тензометрических каналах при воздействии фактора I на значение вертикальной силы Fν по формуле:

где ai,1 - i-ый элемент 1-го столбца матрицы приращений (см. табл. 1).

Для вертикальной силы с эксцентриситетом градуировочные коэффициенты определили, вычитая из приращений сигналов при воздействии фактора III приращения сигналов при воздействии фактора II и деля полученную разность на изгибающий момент, равный произведению вертикальной силы на эксцентриситет Fν⋅е по формуле:

где

a i,2 - i-ый элемент 2-го столбца матрицы приращений (см. табл. 1).

Градуировочные коэффициенты для боковой силы определили, вычитая из приращений сигналов при воздействии фактора III приращения сигналов при воздействии фактора I и деля разность на боковую силу Fb по формуле:

где

a i,3 - i-ый элемент 3-го столбца матрицы приращений (см. табл. 1).

Градуировочные коэффициенты для прогиба рельса определили, вычитая из приращений сигналов при воздействии фактора IV приращения сигналов при воздействии фактора I и деля разность на экспериментальное значение прогиба рельса р по формуле:

где

а i,4 - i-ый элемент 4-го столбца матрицы приращений (таблица 1).

Результаты определения градуировочных коэффициентов в виде матрицы приведены в табл. 2:

Используя полученные градуировочные коэффициенты bi,j (см. табл. 2), определили градуировочную матрицу по правилам вычисления обратной матрицы:

Рельс нагружали комбинацией нескольких факторов, имитирующих воздействие колеса железнодорожного подвижного состава. Действительные значения воздействующих факторов приведены в табл. 3.

Определяли значения приращений сигналов в каналах тензометрической системы (см. табл. 4)

Умножали полученные для каждого испытания приращения сигналов на обратную матрицу ci,j и определяли результат измерений каждого из воздействующих факторов. Результаты измерений приведены в табл. 5.

На основании действительных значений факторов (см. табл. 3) и результатов их измерений (см. табл. 5) определили относительные погрешности измерения вертикальной и боковой сил по формуле:

где - действительное значение силы, кН; Fr - результат измерения силы, кН.

Результаты оценки относительных погрешностей вертикальной и боковой сил приведены в табл. 6.

Как видно из табл. 6, заявляемый способ обеспечивает относительную погрешность измерения вертикальной силы не более 3%, а боковой силы - 2% в широком диапазоне жесткости подрельсового основания от 107 до 1012 Н/м3, что соответствует изменению прогиба рельса в вертикальной плоскости до 8 мм.

Заявляемый способ, по сравнению с прототипом, позволяет исключить влияние на результаты измерений вертикальных и боковых сил неопределенности жесткости подрельсового основания. При этом снижаются затраты на проведение измерений, за счет отсутствия необходимости изменения конструкции пути и проведения мероприятий по поддержанию заданной жесткости подрельсового основания.

Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава, включающий установку в четырех зонах шейки рельса тензорезисторов и подключение их к входам измерительных каналов тензометрической аппаратуры, позволяющей регистрировать отклик в измерительных каналах на приращение входных факторов, градуировку измерительных каналов по определенному плану эксперимента с вычислением градуировочных коэффициентов, отличающийся тем, что при градуировке дополнительно измеряют прогиб рельса, характеризующий изменение жесткости подрельсового основания, градуировку выполняют по четырехфакторному плану эксперимента комбинацией четырех факторов: вертикальной силы, изгибающего момента, боковой силы и прогиба рельса, а результат измерения компонентов нагрузки определяют, как произведение градуировочной квадратной матрицы 4×4 на приращения сигналов в тензометрических каналах, возникающих при контактном взаимодействии рельса с колесом.
Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава
Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава
Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава
Источник поступления информации: Роспатент

Показаны записи 21-30 из 40.
26.10.2019
№219.017.db2e

Способ акустико-эмиссионного контроля сосудов, работающих под давлением

Использование: для диагностики сосудов и трубопроводов, работающих под давлением, методом акустической эмиссии. Сущность изобретения заключается в том, что проводят предварительное исследование акустических свойств объекта контроля, затем устанавливают первичные преобразователи, проверяют...
Тип: Изобретение
Номер охранного документа: 0002704146
Дата охранного документа: 24.10.2019
14.12.2019
№219.017.eda6

Способ усиления основания фундамента при реконструкции зданий и сооружений

Изобретение относится к строительству и может быть использовано для усиления оснований ленточных фундаментов и фундаментов стаканного типа при реконструкции зданий и сооружений, подвергшихся в период эксплуатации неравномерным осадкам и нагрузкам, возникающим из-за их локального замачивания и...
Тип: Изобретение
Номер охранного документа: 0002708929
Дата охранного документа: 12.12.2019
04.02.2020
№220.017.fd8b

Способ акустико-эмиссионного контроля качества кольцевого сварного шва в процессе многопроходной сварки

Использование: для акустико-эмиссионного контроля качества кольцевого сварного шва. Сущность изобретения заключается в том, что устанавливаются по контуру шва широкополосные преобразователи, осуществляют калибровку объекта контроля, устанавливают пороги селекции выше уровня шумов и осуществляют...
Тип: Изобретение
Номер охранного документа: 0002712659
Дата охранного документа: 31.01.2020
13.06.2020
№220.018.26cc

Ультразвуковой способ определения механических напряжений в рельсах

Использование: для определения механических напряжений в рельсах. Сущность изобретения заключается в том, что в рельс излучающим и приемным пьезоэлектрическими преобразователями, оси которых ориентированы навстречу друг другу, вводят импульсы ультразвуковых колебаний продольных и поперечных...
Тип: Изобретение
Номер охранного документа: 0002723148
Дата охранного документа: 09.06.2020
14.06.2020
№220.018.26dc

Ультразвуковой способ определения механических напряжений в рельсах и устройство для его осуществления

Использование: для определения напряженного состояния рельсовых плетей. Сущность изобретения заключается в том, что излучающим пьезоэлектрическим преобразователем в нагруженный рельс и ненагруженный его аналог вводят импульсы ультразвуковых продольных и поперечных волн, принимают приемными...
Тип: Изобретение
Номер охранного документа: 0002723146
Дата охранного документа: 09.06.2020
12.07.2020
№220.018.31fa

Способ настройки чувствительности ультразвукового дефектоскопа

Использование: для настройки чувствительности ультразвукового дефектоскопа. Сущность изобретения заключается в том, что преобразователем дефектоскопа излучают в настроечный образец и принимают от известного отражателя в нем ультразвуковые сигналы, оценивают амплитуду ультразвукового сигнала,...
Тип: Изобретение
Номер охранного документа: 0002726277
Дата охранного документа: 10.07.2020
12.07.2020
№220.018.3225

Многоканальное акустико-эмиссионное устройство

Изобретение относится к неразрушающему контролю и может использоваться при прочностных испытаниях композиционных и металлических конструкций. Многоканальное акустико-эмиссионное устройство состоит из акустических преобразователей (2), подсоединенных к модулю из четырех измерительных каналов,...
Тип: Изобретение
Номер охранного документа: 0002726278
Дата охранного документа: 10.07.2020
24.07.2020
№220.018.375f

Способ акустико-эмиссионного контроля конструкций

Изобретение относится к области технической диагностики и неразрушающего контроля конструкций с использованием метода акустической эмиссии. Технический эффект, заключающийся в расширении технологических возможностей акустико-эмиссионного контроля элементов конструкции, возможности проведения...
Тип: Изобретение
Номер охранного документа: 0002727316
Дата охранного документа: 21.07.2020
31.07.2020
№220.018.3a92

Пневматический ударный механизм

Изобретение относится к строительству и горной промышленности, в частности, к пневматическим устройствам ударного действия. Ударный механизм содержит цилиндрический корпус с выпускными каналами, кольцевой фланец со сквозным центральным отверстием, рабочий инструмент с хвостовиком, ступенчатый...
Тип: Изобретение
Номер охранного документа: 0002728027
Дата охранного документа: 28.07.2020
12.04.2023
№223.018.43f0

Пневматический молот

Изобретение относится к пневматическим машинам ударного действия и может быть применено в строительстве, в горном деле и машиностроении. Пневматический молот содержит цилиндрический корпус, рабочий инструмент с хвостовиком, удерживаемый относительно цилиндрического корпуса, рукоять с впускным...
Тип: Изобретение
Номер охранного документа: 0002793660
Дата охранного документа: 04.04.2023
Показаны записи 21-24 из 24.
20.04.2023
№223.018.4aab

Способ контроля поверхности катания железнодорожных колес в движении

Изобретение относится к области технической диагностики и неразрушающего контроля, и может быть использовано для контроля за состоянием колесных пар вагонов в ходе движения железнодорожного состава. В способе на измерительном участке пути на рельс устанавливают тензодатчики, задают пороговое...
Тип: Изобретение
Номер охранного документа: 0002784392
Дата охранного документа: 24.11.2022
20.04.2023
№223.018.4b23

Способ определения координат дефектов при акустико-эмиссионном контроле

Изобретение относится к неразрушающему контролю металлических конструкций методом акустической эмиссии и может быть использовано для определения координат дефектов в протяженных и крупногабаритных объектах железнодорожной, авиационной, космической, нефтяной и газовой отраслях промышленности при...
Тип: Изобретение
Номер охранного документа: 0002775204
Дата охранного документа: 28.06.2022
14.05.2023
№223.018.5700

Способ управления производственным процессом неразрушающего контроля

Изобретение относится к способу управления производственным процессом неразрушающего контроля в организациях, имеющих обособленные структурные подразделения (удаленные исполнители). Техническим результатом является повышение точности контроля производственного рабочего процесса. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002733592
Дата охранного документа: 05.10.2020
23.05.2023
№223.018.6c63

Способ ультразвукового контроля паяных соединений

Использование: для обнаружения дефектов в нахлесточных двухсторонних паяных соединениях после изготовления и в процессе эксплуатации. Сущность изобретения заключается в том, что с помощью ультразвукового дефектоскопа генерируют ультразвуковые импульсы, облучают этими импульсами объект контроля...
Тип: Изобретение
Номер охранного документа: 0002739385
Дата охранного документа: 23.12.2020
+ добавить свой РИД