×
22.10.2019
219.017.d892

Результат интеллектуальной деятельности: Ракетный двигатель твердого топлива (РДТТ) с изменяемым вектором тяги по направлению и сопловая заглушка

Вид РИД

Изобретение

№ охранного документа
0002703599
Дата охранного документа
21.10.2019
Аннотация: Ракетный двигатель твердого топлива с изменяемым вектором тяги по направлению состоит из силового теплоизолированного корпуса и центрального тела, образующих в выходной части контур кольцевого сопла, канального заряда твердого топлива, скрепленного с силовым теплоизолированным корпусом, воспламенительного устройства и сопловой заглушки, привода перемещения, расположенного в центральном теле. Часть центрального тела выходит за срез внешнего контура кольцевого сопла. Силовой теплоизолированный корпус снабжен дополнительной внутренней силовой теплоизолированной оболочкой, являющейся продолжением центрального тела, расположенной во внутренней полости канального заряда твердого топлива и соединенной с задним днищем силового теплоизолированного корпуса герметизирующим эластичным шарниром и механизмом привода углового перемещения относительно центральной оси. Другое изобретение группы относится к сопловой заглушке, выполненной в виде герметизирующего элемента. Герметизирующий элемент выполнен в виде тороидальной эластичной камеры, заполненной газом под давлением, установленной в дозвуковой части кольцевого сопла и соединенной связями в виде стержней с несколькими сегментами, прилегающими к сверхзвуковой части кольцевого сопла и равномерно расположенными по его периметру. Группа изобретений позволяет обеспечить снижение потерь тяги, а также надежность и стабильность выхода на режим при запуске двигателя. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к ракетной технике и может быть использовано для разработки двигателя, обеспечивающего перемещение модуля по требуемой траектории при сложных внешних условиях: - например доставку модуля с аппаратурой на подводную глубоководную станцию и обратно при сильных подводных течениях. При этом меняется противодавление окружающей среды, что приводит к нерасчетным режимам работы сопла двигателя, а наличие сильных подводных течений требует удержания модуля на расчетной траектории движения, что должно быть обеспечено управлением по направлению.

Известны РДТТ с изменяемым вектором тяги по направлению, за счет использования дополнительных поворотных двигателей, двигателей с поворотными соплами, двигателей оснащенных аэродинамическими и газовыми рулями, выдвижными щитками и дефлекторами, а также двигатели с вводом жидкости, газов или твердых тел в сверхзвуковую часть сопла (А.И. Бабкин, С.И. Белов, Н.Б. Рутковский, Е.В. Соловьев, "Основы теории автоматического управления ракетными двигательными установками", Москва, "Машиностроение", 1986 г.). Однако применение таких схем двигателей не всегда целесообразно, исходя из условий компоновки в изделии и целевых условий применения.

Известны управляемые РДТТ с кольцевым соплом внешнего расширения и установленным внутри центральным телом, а также изменяемым вектором тяги по величине и направлению (см. И.Х. Фахрутдинов, А.В. Котельников "Конструкция и проектирование ракетных двигателей твердого топлива", Москва, Машиностроение, 1987 г. (см. раздел 6.4, рисунок 6.13 принятый за прототип).

Недостатками данной конструкции являются:

- наличие ребер крепления центрального тела, что влечет за собой, необходимость их теплоизоляции, а при наличии К-фазы в потоке газа и обеспечение их эрозионной стойкости, а также влияет на структуру потока газа в сверхзвуковой части сопла и снижение тяги, а также увеличение массы двигателя, что увеличивает шарнирный момент, увеличивающий мощность привода;

- обтекание газом центрального тела влияет на структуру потока в предсопловом объеме и при движении приводит к изменению давления в камере сгорания, и как следствие изменению тяги;

- необходимость прокладки кабелей системы управления приводом перемещения через высокотемпературную зону потока газа;

- для обеспечения управления требуется реализовать поворот оси струи газа в закритической части. Величина угла поворота составляет до 11°, что снижает величину осевой тяги, которая пропорциональна углу поворота.

Для повышения надежности запуска двигателя его камера сгорания герметизируется - в сопле устанавливается вскрываемая сопловая заглушка.

Известны конструкции сопловых заглушек ракетных двигателей твердого топлива (см. A.M. Виницкий "Ракетные двигатели на твердом топливе", Москва, Машиностроение, 1973 г.). В известной конструкции рисунок 1.13 сопловая заглушка в форме тарели установлена в сверхзвуковой части сопла (прототип к п. 7).

При использовании данной конструкции сопловой заглушки, в РДТТ с кольцевым соплом не обеспечивается достаточная надежность герметизации и стабильность давления вскрытия сопловой заглушки.

Задачей данного изобретения является создание двигателя, обеспечивающего перемещение модуля по требуемой траектории при сложных внешних условиях, управляемого по направлению с минимальными потерями тяги, обладающего повышенной надежностью герметизации камеры сгорания и запуска, обеспечивающего стабильность давления вскрытия сопловой заглушки.

Указанная задача достигается за счет того, что в известном РДТТ с изменяемым вектором тяги по направлению, состоящий из силового теплоизолированного корпуса и центрального тела, образующими в выходной части контур кольцевого сопла, канального заряда твердого топлива, скрепленного с силовым теплоизолированным корпусом, воспламенительного устройства, сопловой заглушки, привода перемещения, расположенного в центральном теле, причем часть центрального тела выходит за срез внешнего контура кольцевого сопла, силовой теплоизолированный корпус РДТТ снабжен дополнительной внутренней силовой теплоизолированной оболочкой, являющейся продолжением центрального тела, расположенной во внутренней полости канального заряда твердого топлива и соединенной с задним днищем силового теплоизолированного корпуса герметизирующим эластичным шарниром и механизмом привода углового перемещения относительно центральной оси, кроме того, ось симметрии профиля кольцевого сопла в закритической части параллельна оси двигателя, или ось симметрии профиля кольцевого сопла в закритической части составляет с осью двигателя угол в пределах 5…35°, механизм привода углового перемещения жестко скреплен с силовым теплоизолированным корпусом и соединен с дополнительной внутренней силовой теплоизолированной оболочкой механической связью управления ее перемещением, канальный заряд твердого топлива скреплен с дополнительной внутренней силовой теплоизолированной оболочкой, или механизм привода углового перемещения жестко скреплен с дополнительной внутренней силовой теплоизолированной оболочкой и соединен с силовым теплоизолированным корпусом механической связью управления ее перемещением. Сопловая заглушка, выполненная в виде герметизирующего элемента, отличающаяся тем, что герметизирующий элемент, выполнен в виде тороидальной эластичной камеры, заполненной газом под давлением, установленной в дозвуковой части кольцевого сопла и соединенной связями в виде стержней с несколькими сегментами, прилегающими к сверхзвуковой части кольцевого сопла и равномерно расположенными по его периметру.

Предлагаемая конструкция РДТТ с изменяемым вектором тяги по направлению и сопловая заглушка поясняется чертежами.

На фиг. 1 изображен общий вид РДТТ с изменяемым вектором тяги по направлению, ось симметрии профиля кольцевого сопла которого параллельна оси двигателя и верхним расположением модуля.

На фиг. 2 изображено положение сегментов сопловой заглушки в кольцевом сопле.

На фиг. 3 изображен общий вид РДТТ с изменяемым вектором тяги по направлению, ось симметрии профиля кольцевого сопла в закритической части которого составляет угол α в пределах 5…35°, относительно оси двигателя и нижним расположением модуля.

На фиг. 4 изображена конструкция сопловой заглушки.

РДТТ с изменяемым вектором тяги по направлению (см. фиг. 1) состоит из канального заряда твердого топлива 1 с воспламенительным устройством 2, скрепленного с силовым теплоизолированным корпусом 3. Центральное тело 4 соединено с дополнительной внутренней силовой теплоизолированной оболочкой 5, расположенной внутри канального заряда твердого топлива 1. Дополнительная внутренняя силовая теплоизолированная оболочка 5 соединена с задним днищем 6 силового теплоизолированного корпуса 3 через герметизирующий эластичный шарнир 7 и механизм привода углового перемещения 8 с механической связью 9 управления ее перемещением.

Кольцевое сопло, образованное центральным телом 4 и силовым теплоизолированным корпусом 3, загерметизировано с помощью сопловой заглушки. Сопловая заглушка, выполнена в виде тороидальной эластичной камеры 10, заполненной газом под давлением, установленной в дозвуковой части кольцевого сопла и соединенной связями в виде стержней 11 с несколькими сегментами 12 (см. фиг. 4), прилегающими к сверхзвуковой части кольцевого сопла и равномерно расположенными по его периметру.

Кроме того, канальный заряд твердого топлива 1 с воспламенительным устройством 2 может быть скреплен с дополнительной внутренней силовой теплоизолированной оболочкой 5 (см. фиг. 3), а также ось симметрии профиля сопла в закритической части может быть как параллельна оси РДТТ с изменяемым вектором тяги по направлению, так и составлять с ней угол α в пределах 5…35°, а механизм привода углового перемещения 8 может быть как жестко скреплен с силовым теплоизолированным корпусом 3 и соединен с дополнительной внутренней силовой теплоизолированной оболочкой 5 механической связью 9 управления ее перемещением, так и жестко скреплен с дополнительной внутренней силовой теплоизолированной оболочкой 5 и соединен с силовым теплоизолированным корпусом 3 механической связью 9 управления ее перемещением.

Предлагаемый РДТТ с изменяемым вектором тяги по направлению стыкуется с модулем 13 (показано условно) как с передней части, так и с задней с помощью стыковочных узлов 14. При компоновке РДТТ с изменяемым вектором тяги по направлению с модулем 13 в передней части рационально управление боковым вектором тяги осуществлять перемещением дополнительной внутренней силовой теплоизолированной оболочки 5, а при стыковке модуля 13 к задней части - перемещением силового теплоизолированного корпуса 3. При этом возможно использование свободного объема дополнительной внутренней силовой теплоизолированной оболочки 5.

РДТТ с изменяемым вектором тяги по направлению и сопловая заглушка работают следующим образом. В исходном положении силовой теплоизолированный корпус 3 и дополнительная внутренняя силовая теплоизолированная оболочка 5 соединены между собой эластичным шарниром 7 и механизмом привода углового перемещения 8 с механической связью 9 управления ее перемещением. Эластичный шарнир 7 компенсирует взаимные перемещения силового теплоизолированного корпуса 3 и дополнительной внутренней силовой теплоизолированной оболочки 5 и герметизирует камеру сгорания РДТТ с изменяемым вектором тяги по направлению.

За счет того, что силовой теплоизолированный корпус 3 и дополнительная внутренняя силовая теплоизолированная оболочка 5, являющаяся продолжением центрального тела 4 образуют канал, обеспечена плавность течения газа в предсопловом объеме.

Часть центрального тела 4, выходящая за срез внешнего контура сопла, являющаяся соплом внешнего расширения, обеспечивает саморегулирование режима работы кольцевого сопла по степени расширения в зависимости от противодавления окружающей среды, что оптимизирует потери тяги.

Сопловая заглушка, состоящая из сегментов 12 соединенных стержнями 11 с тороидальной эластичной камерой 10, которая за счет внутреннего давления заполняющего ее газа обеспечивает герметичность камеры сгорания РДТТ с изменяемым вектором тяги по направлению и фиксацию положения кольцевого сопла. При росте давления в камере сгорания РДТТ с изменяемым вектором тяги по направлению и достижении необходимого перепада давления между давлением в камере сгорания РДТТ с изменяемым вектором тяги по направлению и давлением в тороидальной эластичной камере, сопловая заглушка вылетает из кольцевого сопла и РДТТ с изменяемым вектором тяги по направлению создает тягу. Такая конструкция РДТТ с изменяемым вектором тяги по направлению обеспечивает надежную герметизацию камеры сгорания и стабильность давления вскрытия сопловой заглушки, что обеспечивает расчетный выход РДТТ с изменяемым вектором тяги по направлению на режим, а также фиксацию положения кольцевого сопла до начала работы.

По мере необходимости в управляющих боковых усилиях механизм привода углового перемещения 8 по команде системы управления перемещает или силовой теплоизолированный корпус 3 или дополнительную внутреннюю силовую теплоизолированную оболочку 5 в нужном направлении и перераспределяет поток газа в критическом сечении, относительно плоскости, проходящей через продольную ось РДТТ с изменяемым вектором тяги по направлению и перпендикулярную требуемому направлению создания боковой силы, что создает асимметрию тяги, обеспечивая возникновение момента вращения вокруг центра масс и боковую силу. При этом, по сравнению с прототипом, потери тяги меньше, поскольку боковое усилие создается за счет перераспределения потока газа в критическом сечении кольцевого сопла, а угол поворота или силового теплоизолированного корпуса 3 или дополнительной внутренней силовой теплоизолированной оболочки 5 составляет не более 3,5°. При этом возможны два варианта управления вектором тяги. В первом варианте (см. фиг. 1) кольцевое сопло образует поток газа параллельный оси РДТТ с изменяемым вектором тяги по направлению, перераспределение потока газа в критическом сечении создает асимметрию тяги, что обеспечивает возникновение момента вращения вокруг центра масс и незначительную боковую силу. Во втором варианте (см. фиг. 3) кольцевое сопло образует поток газа под углом к оси РДТТ с изменяемым вектором тяги по направлению, перераспределение потока газа в критическом сечении приводит к возникновению бокового усилия, в несколько раз большего, чем в первом варианте.

Конструктивное исполнение такого РДТТ с изменяемым вектором тяги по направлению обеспечивает движение модуля по требуемой траектории при сложных внешних условия. При небольших потребных управляющих усилиях для обеспечения траектории движения модуля следует применять РДТТ с изменяемым вектором тяги по направлению ось симметрии профиля кольцевого сопла которого параллельна оси двигателя (см. фиг. 1), при необходимости обеспечения больших управляющих усилиях - РДТТ с изменяемым вектором тяги по направлению ось симметрии профиля кольцевого сопла которого составляет угол α в пределах 5…35° относительно оси двигателя (см. фиг. 3).

Повышение надежности герметизации камеры сгорания РДТТ с изменяемым вектором тяги по направлению и стабильности давления вскрытия сопловой заглушки достигается за счет того, что герметизирующий элемент, выполнен в виде тороидальной эластичной камеры 10, заполненной газом под давлением, установленной в дозвуковой части кольцевого сопла и соединенной связями в виде стержней 11 с несколькими сегментами 12, прилегающими к сверхзвуковой части кольцевого сопла и равномерно расположенными по его периметру.

Стабильность давления вскрытия сопловой заглушки обеспечивается требуемым давлением газа заполняющего тороидальную эластичную камеру 10, создающим необходимый перепад давления для вскрытия сопловой заглушки между давлением в камере сгорания РДТТ с изменяемым вектором тяги по направлению и давлением в тороидальной эластичной камере.

Применение такой конструкции сопловой заглушки кроме надежной герметизации кольцевого сопла обеспечивает фиксацию его положения до начала работы РДТТ с изменяемым вектором тяги по направлению.

Предлагаемая конструкция РДТТ с изменяемым вектором тяги по направлению и сопловая заглушка позволяет обеспечить движение модуля по требуемой траектории при сложных внешних условиях, снизить потери тяги и обеспечить надежность и стабильность выхода на режим при запуске двигателя.

Предлагаемая конструкция РДТТ с изменяемым вектором тяги по направлению и сопловая заглушка планируется для использования в перспективных разработках.


Ракетный двигатель твердого топлива (РДТТ) с изменяемым вектором тяги по направлению и сопловая заглушка
Ракетный двигатель твердого топлива (РДТТ) с изменяемым вектором тяги по направлению и сопловая заглушка
Ракетный двигатель твердого топлива (РДТТ) с изменяемым вектором тяги по направлению и сопловая заглушка
Ракетный двигатель твердого топлива (РДТТ) с изменяемым вектором тяги по направлению и сопловая заглушка
Ракетный двигатель твердого топлива (РДТТ) с изменяемым вектором тяги по направлению и сопловая заглушка
Источник поступления информации: Роспатент

Показаны записи 1-10 из 58.
27.06.2015
№216.013.5a68

Твердотопливный ракетный двигатель

Изобретение относится к области ракетной техники и может быть использовано при создании ракет различного назначения, в частности космического, в системе аварийного спасения. Твердотопливный ракетный двигатель состоит из двух прочноскрепленных с корпусами зарядов твердого топлива...
Тип: Изобретение
Номер охранного документа: 0002554685
Дата охранного документа: 27.06.2015
20.10.2015
№216.013.8456

Способ сборки газовода с эластичным шарниром

Изобретение относится к области машиностроения и направлено на разработку способа сборки гибких газоводов, работающих в условиях высоких температур и переменных давлений. Гибкий газовод содержит подвижный телескопический узел в виде металлических оболочек, сопряженных по цилиндрическим...
Тип: Изобретение
Номер охранного документа: 0002565481
Дата охранного документа: 20.10.2015
10.02.2016
№216.014.c273

Клапан регулирования расхода газа

Изобретение относится к области машиностроения и направлено на совершенствование конструкций клапанов, предназначенных для управления вектором тяги летательных аппаратов. Клапан регулирования расхода газа состоит из корпуса с входным и выходным патрубками, седла, заслонки и вала,...
Тип: Изобретение
Номер охранного документа: 0002574779
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4c0

Способ подтверждения внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя и стендовое устройство

При подтверждении внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя сжигают серию зарядов с различной скоростью горения в камере-имитаторе с расходным круглым отверстием критического сечения с замером давления в камере-имитаторе. Перед сжиганием...
Тип: Изобретение
Номер охранного документа: 0002574778
Дата охранного документа: 10.02.2016
13.01.2017
№217.015.8c04

Импульсный малогабаритный пороховой вытеснитель рабочей жидкости

Импульсный малогабаритный пороховой вытеснитель рабочей жидкости содержит камеру сгорания с пороховым зарядом, пиропатрон и емкость, разделенную выворачивающей диафрагмой на две полости - газовую, сообщающуюся с камерой сгорания, и жидкостную, заполненную рабочей жидкостью. Камера сгорания...
Тип: Изобретение
Номер охранного документа: 0002604775
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cdb

Твердотопливный импульсный двигатель

Изобретение относится к области ракетной техники и может быть использовано при создании твердотопливных импульсных двигателей, к которым предъявляются повышенные требования разноимпульсности при работе в паре или в целой связке. Твердотопливный импульсный двигатель содержит камеру сгорания с...
Тип: Изобретение
Номер охранного документа: 0002604772
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.ba6c

Нагружающее устройство

Изобретение относится к испытательной технике. Нагружающее устройство содержит привод, корпус с крышкой, выполненной с полым валом, установленный в крышке шестеренчатый редуктор, малая шестерня которого установлена на валу привода, а большая - на полом валу крышки, винтовую передачу,...
Тип: Изобретение
Номер охранного документа: 0002615719
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.bbc4

Нагружающее устройство

Изобретение относится к испытательной технике и может быть использовано для создания тянущих и толкающих усилий в силовых цепях испытательных стендов, для тарировки датчиков силы, испытания материалов на прочность, в качестве приводов исполнительных механизмов, в качестве домкратов и прессов....
Тип: Изобретение
Номер охранного документа: 0002615913
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c7bb

Газораспределительный клапан

Изобретение относится к области машиностроения и направлено на совершенствование газораспределительных клапанов, обеспечивающих управление летательным аппаратом в плоскостях тангажа, рыскания и крена. Газораспределительный клапан содержит корпус с входным и двумя выходными патрубками, заслонки,...
Тип: Изобретение
Номер охранного документа: 0002619008
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cd56

Узел соединения отделяемых частей летательного аппарата

Изобретение относится к области машиностроения, а именно к системам соединения разделяемых частей летательных аппаратов. Технический результат - повышение сдвигоустойчивости узла соединения при длительных знакопеременных нагрузках с одновременной возможностью его распадения - отделения. Узел...
Тип: Изобретение
Номер охранного документа: 0002619611
Дата охранного документа: 17.05.2017
Показаны записи 1-10 из 24.
10.12.2013
№216.012.899f

Устройство воспламенения заряда твердотопливного ракетного двигателя

Изобретение относится к области ракетно-космической техники и может быть использовано в конструкции ракетных двигателей твердого топлива, преимущественно для воспламенителя многошашечного заряда всестороннего горения. Устройство воспламенения заряда твердотопливного ракетного двигателя содержит...
Тип: Изобретение
Номер охранного документа: 0002500913
Дата охранного документа: 10.12.2013
20.04.2014
№216.012.b8dc

Ракетный двигатель твердого топлива для увода отделяемых частей ракеты

Ракетный двигатель твердого топлива для увода отделяемых частей ракеты содержит корпус с твердотопливным многошашечным зарядом, расположенным между опорными решетками и двумя газосвязанными соплами, имеющими разные диаметры критических сечений, а также воспламенители с пиротехническим составом,...
Тип: Изобретение
Номер охранного документа: 0002513052
Дата охранного документа: 20.04.2014
10.05.2015
№216.013.4906

Способ очистки газовой смеси от водорода и/или его изотопов

Изобретение относится к способу очистки газовой смеси от водорода и/или его изотопов. В способе очистки газовой смеси от водорода и/или его изотопов, включающем окисление водорода кислородом в присутствии палладийсодержащего катализатора, согласно изобретению формируют диффузией поток водорода...
Тип: Изобретение
Номер охранного документа: 0002550201
Дата охранного документа: 10.05.2015
10.02.2016
№216.014.c4c0

Способ подтверждения внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя и стендовое устройство

При подтверждении внутрибаллистических и энергетических характеристик твердотопливного заряда ракетного двигателя сжигают серию зарядов с различной скоростью горения в камере-имитаторе с расходным круглым отверстием критического сечения с замером давления в камере-имитаторе. Перед сжиганием...
Тип: Изобретение
Номер охранного документа: 0002574778
Дата охранного документа: 10.02.2016
13.01.2017
№217.015.7068

Поглотитель водорода

Изобретение относится к области химии. Поглотитель водорода размещают в замкнутом объеме с очищаемой кислородсодержащей или кислородобедненной газовой средой. Обеспечивают окисление содержащегося в смеси водорода на палладиевом катализаторе 4. Образующиеся пары воды проникают через мембрану 5...
Тип: Изобретение
Номер охранного документа: 0002596258
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.8c04

Импульсный малогабаритный пороховой вытеснитель рабочей жидкости

Импульсный малогабаритный пороховой вытеснитель рабочей жидкости содержит камеру сгорания с пороховым зарядом, пиропатрон и емкость, разделенную выворачивающей диафрагмой на две полости - газовую, сообщающуюся с камерой сгорания, и жидкостную, заполненную рабочей жидкостью. Камера сгорания...
Тип: Изобретение
Номер охранного документа: 0002604775
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cdb

Твердотопливный импульсный двигатель

Изобретение относится к области ракетной техники и может быть использовано при создании твердотопливных импульсных двигателей, к которым предъявляются повышенные требования разноимпульсности при работе в паре или в целой связке. Твердотопливный импульсный двигатель содержит камеру сгорания с...
Тип: Изобретение
Номер охранного документа: 0002604772
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.d3e7

Импульсный газогенератор

Изобретение относится к устройствам, предназначенным для генерирования газов, и может быть использовано для наддува подушек безопасности, авиажелобов для эвакуации пассажиров, спасательных плотов и т.п. Импульсный газогенератор включает функциональный заряд, размещенный с периферийным зазором в...
Тип: Изобретение
Номер охранного документа: 0002622137
Дата охранного документа: 13.06.2017
20.01.2018
№218.016.1158

Ракетный двигатель твердого топлива с однократно изменяемым вектором тяги

Изобретение относится к области ракетно-космической техники и может быть использовано при проектировании двигателей твердого топлива для корректировки траектории полета управляемых ракет и корректировки полета отделяемых элементов от ракеты-носителя. Ракетный двигатель твердого топлива с...
Тип: Изобретение
Номер охранного документа: 0002633973
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.1446

Способ извлечения золота из бурых и каменных углей

Изобретение относится к извлечению золота из бурых и каменных углей. Способ включает дробление углей до 6-10 мм, загрузку их на решетку в металлическую герметичную емкость с патрубком, без соприкосновения с находящейся в ней водой, подогрев емкости до 135-140°C и выдержку до полного испарения...
Тип: Изобретение
Номер охранного документа: 0002634835
Дата охранного документа: 03.11.2017
+ добавить свой РИД