×
18.10.2019
219.017.d7e6

Результат интеллектуальной деятельности: ИЗМЕРИТЕЛЬ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА

Вид РИД

Изобретение

№ охранного документа
0002703281
Дата охранного документа
16.10.2019
Аннотация: Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения транспортного средства содержит последовательно соединенные первый генератор СВЧ с фиксированной частотой ƒ, направленный ответвитель, первый циркулятор и первую антенну, излучение которой направлено под углом α к направлению движения в вертикальной плоскости, первый смеситель и вычислительный блок, при этом основной выход направленного ответвителя подсоединен к первому выводу первого циркулятора, а его вспомогательный выход соединен с первым входом первого смесителя, выход которого соединен с вычислительным блоком, первая антенна соединена со вторым выводом первого циркулятора. Дополнительно устройство содержит делитель мощности, вход которого соединен с третьим выводом первого циркулятора, а первый выход - с вторым входом первого смесителя, второй смеситель, первый вход которого соединен с вторым выходом делителя мощности, второй генератор СВЧ с фиксированной частотой ƒ, второй циркулятор и вторую антенну, излучение которой направлено под углом α к направлению движения в вертикальной плоскости, при этом выход генератора соединен с первым выводом второго циркулятора, вторая антенна соединена со вторым выводом второго циркулятора, а его третий вывод соединен с вторым входом второго смесителя, выход которого соединен с вычислительным блоком, при этом первая и вторая антенны расположены рядом и дополнительно повернуты на углы β в горизонтальной плоскости по разные стороны от оси транспортного средства. 4 ил.

Изобретение относится к измерительной технике, в частности к устройствам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны и применяются радиоволновые устройства измерения перемещения и скорости, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). Обычно они применяются в радиолокации для определения скорости и координат движущихся объектов. Также они находят применение для измерения путевой скорости и перемещения автомобилей и железнодорожных составов. В отличие от устройств, определяющих перемещение по числу оборотов колеса, как например, в одометрах, радиоволновые доплеровские устройства измерения позволяют определять истинную путевую скорость и перемещение, которое является результатом интегрирования скорости, пропорциональной доплеровской частоте по времени. В данном случае оно не зависит от скольжения, движения на виражах и при буксовании, так как измерение производится бесконтактно.

Доплеровский способ измерения заключается в зондировании движущихся объектов электромагнитными волнами СВЧ диапазона и выделении частоты смещения рассеянной волны. Если источник излучения с фиксированной частотой ƒ0 расположен спереди транспортного средства движущегося со скоростью V и его антенна направлена под углом α к направлению движения в вертикальной плоскости (см. Фиг. 2), то доплеровская частота ƒD смещения отраженного сигнала определится по формуле:

где - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, которая для воздуха равна единице, с - скорость света в воздухе. Таким образом, измеряя доплеровскую частоту, можно вычислить скорость по формуле:

Поскольку при движении скорость постоянно меняется, то пройденное расстояние S или перемещение за время Т, будет определяться интегралом от мгновенной скорости или доплеровской частоты по времени согласно уравнению:

При этом обычно ƒD определяют по максимуму спектральной плотности доплеровского сигнала.

Такие устройства для измерения перемещения и скорости являются более точными по сравнению с широко применяемыми в настоящее время одометрами, хотя они также представляют скорость в одномерном виде. В тоже время, в современных автомобилях предпочтительно получение информации о двух координатном векторе скорости и определение перемещения в пространстве. Это важно для использования в автономных навигационных системах (например, инерционных), которые в настоящее время предпочитают применять совместно с системами глобального позиционирования (GPS, ГЛОНАСС и др.). Применение для измерения вектора путевой скорости и перемещения инерционных систем на основе гироскопов и акселерометров затруднено из-за необходимости их размещения точно в центре тяжести транспортного средства, защите хрупких механических деталей от вибраций и повреждений, необходимости проведения частых коррекций ошибок, высокой стоимости. При этом необходимо учитывать большое количество параметров, таких как момент инерции, коэффициент трения, сопротивление воздуха и др. Кроме этого, накопительный характер ошибок в определении координат инерционными системами приводит к их существенному росту при продолжительном отсутствии коррекции. Поэтому радиоволновые устройства могут иметь преимущества, поскольку являясь бесконтактными, определяют истинное перемещение относительно подстилающей поверхности.

Наиболее близким по технической сущности является устройство измерения путевой скорости и, соответственно, перемещения ((Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.), принятый за прототип. Устройство содержит последовательно соединенные генератор СВЧ с фиксированной частотой ƒ0, направленный ответвитель, циркулятор и антенну, излучение которой направлено под углом α к направлению движения в вертикальной плоскости, смеситель и вычислительный блок, при этом основной выход направленного ответвителя подсоединен к первому выводу циркулятора, а его вспомогательный выход соединен с первым входом смесителя, антенна соединена со вторым выводом циркулятора, а его третий вывод соединен с вторым входом смесителя, выход которого соединен с вычислительным блоком. В вычислительном блоке определяется доплеровская частота из сигнала на выходе смесителя ƒD и затем по формуле (2) вычисляется скорость. При этом измерение собственно вектора путевой скорости не производится, поскольку измеряется лишь средняя скорость при движении транспортного средства по направлению его оси. Для измерения же вектора путевой скорости за время Δt необходимо произвести измерение модуля вектора скорости и угла его отклонения относительно первоначального положения оси.

Техническим результатом настоящего изобретения является повышение точности измерения перемещения транспортного средства за счет определения его в векторном виде.

Технический результат достигается тем, что измеритель вектора перемещения транспортного средства содержит последовательно соединенные первый генератор СВЧ с фиксированной частотой ƒ1 и направленный ответвитель, а также содержащий первый циркулятор и первую антенну, излучение которой направлено под углом α к направлению движения в вертикальной плоскости, при этом основной выход направленного ответвителя подсоединен к первому выводу первого циркулятора, первая антенна соединена со вторым выводом первого циркулятора, первый смеситель и вычислительный блок, при этом вспомогательный выход первого направленного ответвителя соединен с первым входом первого смесителя, выход которого соединен с вычислительным блоком, дополнительно содержит делитель мощности, вход которого соединен с третьим выводом первого циркулятора, а первый выход со вторым входом первого смесителя, второй смеситель, первый вход которого соединен с вторым выходом делителя мощности, второй генератор СВЧ с фиксированной частотой ƒ2, второй циркулятор и вторую антенну, излучение которой направлено под углом α к направлению движения в вертикальной плоскости, при этом выход генератора соединен с первым выводом второго циркулятора, вторая антенна соединена со вторым выводом второго циркулятора, а его третий вывод соединен с вторым входом второго смесителя, выход которого соединен с вычислительным блоком, при этом первая и вторая антенны расположены в передней части транспортного средства таким образом, что их диаграммы направленности дополнительно повернуты на углы β в горизонтальной плоскости по разные стороны от оси транспортного средства, при этом модуль вектора перемещения Li и его фаза ϕi за время Δt определяется в вычислительном блоке по формулам:

где λ1=c/ƒ1, λ2=c/ƒ2, с - скорость света в воздухе, ƒD1 - доплеровская частота сигнала с выхода первого смесителя, Δƒ=ƒ12, ΔFD - частота сигнала с выхода второго смесителя, ƒD2=Δƒ+ƒD1-ΔFD, r=2h×ctg(α)tg(β), где h - высота расположения антенн.

На Фиг. 1 показана функциональная схема измерителя вектора перемещения.

На Фиг. 2 представлено расположение антенн измерителя вектора перемещения на транспортном средстве (вид сбоку).

На Фиг. 3 показано расположение антенн измерителя вектора перемещения на транспортном средстве сверху при его движении.

На Фиг. 4 поясняется процесс определения вектора перемещения при движении транспортного средства.

Измеритель (см. Фиг. 1) содержит генератор СВЧ с фиксированной частотой ƒ1-1, направленный ответвитель - 2, первый циркулятор - 3, первую антенну - 4, первый смеситель - 5, генератор СВЧ с фиксированной частотой ƒ2-6, второй циркулятор - 7, вторую антенну - 8, делитель мощности на 2-9, второй смеситель - 10 и вычислительный блок - 11. Антенны - 1,2 расположены в передней части транспортного средства (ТС) - 3 таким образом, что оси их диаграмм направленности излучения наклонены относительно оси ТС под углом α в вертикальной и β в горизонтальной плоскости (см. Фиг. 2 и Фиг. 3).

Измеритель работает следующим образом. От генератора СВЧ 1 часть мощности электромагнитных колебаний с частотой ƒ1 поступает на первый вход смесителя 5 через вспомогательный выход направленного ответвителя 2, а другая часть с основного его выхода проходит циркулятор 3 и излучается антенной 4. Затем, после отражения от поверхности, рассеянное излучение возвращается обратно через антенну, циркулятор и делитель мощности 9, попадая на второй вход смесителя 5. На его выходе формируется доплеровский сигнал D1(t), который поступает на вычислительный блок 11. В тоже время от генератора СВЧ 6 электромагнитные колебания с частотой ƒ2 поступают через циркулятор 7 на антенну 8 и излучаются. После отражения от поверхности рассеянное излучение поступает обратно в антенну и через циркулятор подается на вход смесителя 10, а на другой его вход поступает рассеянное отраженное излучение с частотой ƒ1 со второго выхода делителя мощности. С выхода этого смесителя сигнал разности двух отраженных сигналов с частотой ΔFD подается на вычислительный блок.

Таким образом, в вычислительный блок поступает сигнал с доплеровской частотой ƒD1 с выхода первого смесителя и сигнал разности двух доплеровских сигналов с выхода второго смесителя ΔFD=(ƒ1D1)-(ƒ2D2)=(ƒ12)+(ƒD1D2). Отсюда можно числить доплеровский сигнал от второй антенны

где, Δƒ=ƒ12 - величина постоянная, известная заранее.

Поскольку антенны ориентированы по отношению к направлению движения под углами α в вертикальной и β в горизонтальной плоскости, то используя формулу (2) для относительных скоростей взаимного перемещения между антеннами и центральными точками на следах от диаграмм направленностей, можно составить следующую систему уравнений:

где λ1=c/ƒ1, λ2=c/ƒ2 - длины волн излучений от первого и второго генераторов CB4, ƒD1 и ƒD2 - соответствующие доплеровские частоты.

Если транспортное средство движется по прямой (см. Фиг. 3а), совпадающей с его осью, то эти скорости будут равны. Если происходит поворот направо, как показано на Фиг. 3б, то скорость V1 будет больше V2, а движение будет происходить по окружности с радиусом R, проходящей через место расположения антенн на оси транспортного средства. При этом центры левого и правого следов диаграмм направленности антенн датчиков (см. заштрихованные области на Фиг. 3) будут перемещаться по радиусам R+r/2 и R-r/2, где r - расстояние между ними. Тогда за некоторый дискретный i-ый одинаковый период времени Т=Δt, перемещения этих проекций по подстилающей поверхности S1i и S2i (см. Фиг. 4), будут определяться выражениями

где Ri и ωi - текущий радиус и угол поворота оси транспортного средства (см. Фиг. 3), которые определяются из решения системы уравнений (6):

Поскольку, длина хорды Li=2Risin(ωi/2), a ϕii/2 (см. Фиг. 4), то с учетом (7), получим выражение для вектора перемещения {-Lii} за время Δt:

Расстояние r можно вычислить из формул решения прямоугольных треугольников (см. Фиг. 2 и Фиг. 3):

где а - расстояние между проекцией датчика на поверхность и центром следа диаграммы направленности его антенны на поверхность в вертикальной плоскости, h - высота расположения антенн 1,2 над поверхностью (см. Фиг. 2). Перемещения Si1 и Si2, используя (5) можно выразить через формулы:

где Δt - дискретный отрезок времени.

Найдем выражения для суммы А=S1i+S2i и разности В=S1i-S2i.

где ƒD2 - вычисляется по формуле (4). Таким образом, модуль и фазу вектора перемещения за время Δt в соответствии с (8) и (11) можно определить по формулам:

Маршрут перемещения транспортного средства при этом будет складываться из всех измеренных векторов перемещения согласно формулам (12)

Таким образом, описанное устройство позволяет непрерывно измерять перемещение в виде вектора в прямоугольной системе координат, что в итоге существенно повышает точность измерения по сравнению с продольным измерением пройденного пути и позволяет позиционировать транспортное средство в двумерной системе координат.


ИЗМЕРИТЕЛЬ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
ИЗМЕРИТЕЛЬ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
ИЗМЕРИТЕЛЬ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
ИЗМЕРИТЕЛЬ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
ИЗМЕРИТЕЛЬ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
Источник поступления информации: Роспатент

Показаны записи 141-150 из 276.
26.08.2017
№217.015.e380

Устройство для измерения электрического тока

Предлагаемое устройство относится к области информационно-измерительной техники. Техническим результатом является повышение точности и чувствительности измерения электрического тока. Устройство для измерения электрического тока содержит измерительную цепь, подключенную к входу нагревателя, и...
Тип: Изобретение
Номер охранного документа: 0002626387
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d6

Способ контроля сварных швов труб

Использование: для контроля сварных швов труб. Сущность изобретения заключается в том, что зондируют поверхность сварного шва трубы лучом и по принимаемому сигналу определяют предельные значения характеристик дефекта сварного шва по сравнению с нормативными параметрами, при этом трубу закрытыми...
Тип: Изобретение
Номер охранного документа: 0002626307
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e42a

Способ диагностики механизмов, агрегатов и машин на основе оценки микровариаций вращения вала

Изобретение относится к области неразрушающего контроля и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение. Способ заключается в том, что на валу контролируемого изделия устанавливают...
Тип: Изобретение
Номер охранного документа: 0002626388
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e42c

Радиоволновый способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерений. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002626411
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e46b

Способ ранней и дифференциальной электромиографической диагностики основных симптомов болезни паркинсона

Изобретение относится к области медицины, в частности к неврологии. Осуществляют одновременную запись сигналов электрической активности мышц (ЭМГ) верхних и нижних конечностей при неизменном поддержании позы суставного угла. Из спектра ЭМГ выделяют частотный диапазон сигнала, создающий...
Тип: Изобретение
Номер охранного документа: 0002626557
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e7a5

Инвертирующий масштабный усилитель с компенсацией частотной погрешности

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования. Масштабный усилитель с компенсацией частотной погрешности характеризуется тем, что состоит из...
Тип: Изобретение
Номер охранного документа: 0002627123
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.eb2b

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки с объектов, подключенных к источникам электрического напряжения. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной...
Тип: Изобретение
Номер охранного документа: 0002628306
Дата охранного документа: 15.08.2017
20.11.2017
№217.015.ef6c

Универсальная система дозирования жидкостей на базе мембранного насоса

Изобретение относится к области дозирования жидкостей и представляет собой пневмоэлектронную универсальную (по отношению к операциям порционного и непрерывного дозирования) систему, которая может быть использована для автоматизации целого ряда технологических процессов, включающих операции...
Тип: Изобретение
Номер охранного документа: 0002628984
Дата охранного документа: 23.08.2017
Показаны записи 41-41 из 41.
08.06.2019
№219.017.757e

Бесконтактный измеритель пройденного пути

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения пути, пройденного наземным транспортным средством....
Тип: Изобретение
Номер охранного документа: 0002690842
Дата охранного документа: 06.06.2019
+ добавить свой РИД