×
17.10.2019
219.017.d6bc

Результат интеллектуальной деятельности: КОМПРЕССОРНАЯ УСТАНОВКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор. Сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом, который оснащен регулируемым электроприводом с частотным регулятором, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления. Выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости. Газожидкостной сепаратор оснащен уровнемерной выносной камерой, гидравлически связывающей верхнюю и нижнюю части газожидкостного сепаратора. В уровнемерной выносной камере размещен поплавок. На ее внешней стенке установлены два датчика уровня на расстоянии друг от друга, соответствующем минимально и максимально допустимым нижнему и верхнему положениям уровня жидкости в газожидкостном сепараторе. Датчики связаны через блок управления с частотным регулятором электропривода. Исключается попадание газа в проточную часть жидкостного насоса и жидкости в газопровод высокого давления за счет синхронизации работы газожидкостного сепаратора и реверсивного жидкостного насоса с колебаниями уровня жидкости в газожидкостном сепараторе. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин.

Известна компрессорная установка, содержащая рабочую камеру, сообщающуюся с жидкостным насосом, эжектор, перепускное распределительное устройство, всасывающий газовый клапан, который отделяет полость рабочей камеры и газопровода высокого давления от газопровода низкого давления (RU 2154749, 2000 г.).

Недостатком известного устройства является относительно низкая надежность жидкостного насоса в период перекачки газожидкостной смеси, что влечет за собой и снижение надежности работы компрессорной установки в целом.

Из известных технических решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является компрессорная установка, содержащая рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор, при этом сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом, который оснащен регулируемым электроприводом с частотным регулятором, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости (RU 2680021, 2019 г.).

Недостатками указанного устройства являются низкие надежность работы компрессорной установки и безопасность выполнения работ, что объясняется возможностью попадания газа в проточную часть жидкостного насоса при заполнении рабочей камеры газом с попаданием жидкости в газопровод высокого давления при вытеснении газа из рабочей камеры.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является повышение надежности работы установки и уровня безопасности за счет исключения аварийных ситуаций в процессе ее эксплуатации.

Указанная проблема решается тем, что в компрессорной установке, содержащей рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор, при этом сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом, который оснащен регулируемым электроприводом с частотным регулятором, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости, согласно изобретению, газожидкостной сепаратор оснащен уровнемерной выносной камерой, гидравлически связывающей верхнюю и нижнюю части газожидкостного сепаратора, при этом в уровнемерной выносной камере размещен поплавок, а на ее внешней стенке установлены два датчика уровня на расстоянии друг от друга, соответствующем минимально и максимально допустимым нижнему и верхнему положениям уровня жидкости в газожидкостном сепараторе, при этом датчики связаны через блок управления с частотным регулятором электропривода.

Возможен вариант реализации изобретения, когда к поплавку прикреплен постоянный магнит, уровнемерная выносная камера выполнена из немагнитного материала, а датчики уровня, размещенные на внешней стенке уровнемерной выносной камеры, выполнены в виде герконов.

Достигаемый технический результат заключается в исключении попадания газа в проточную часть жидкостного насоса и жидкости в газопровод высокого давления за счет синхронизации работы газожидкостного сепаратора и реверсивного жидкостного насоса с колебаниями уровня жидкости в газожидкостном сепараторе.

Сущность изобретения поясняется чертежом, на котором представлена схема заявляемой компрессорной установки.

Компрессорная установка содержит рабочую камеру 1 и эжектор с камерой смешения 2, подключенные к жидкостному насосу 3, перепускной трубопровод 4, всасывающий газовый клапан 5 и нагнетательный газовый клапан 6, которые отделяют полость рабочей камеры 1 от газопровода низкого давления 7 и газопровода высокого давления 8, соответственно. Жидкостной насос 3 выполнен в виде реверсивного насоса. Рабочая камера 1 выполнена в виде газожидкостного сепаратора. Камера смешения 2 эжектора сообщается с реверсивным жидкостным насосом 3 через сопло 9 эжектора. Вход в сопло 9 эжектора гидравлически связан с источником рабочей жидкости 10. Вход в камеру смешения 2 эжектора связан через всасывающий газовый клапан 5 с газопроводом низкого давления 7. Перепускной трубопровод 4 связывает выход камеры смешения 2 эжектора с верхней частью газожидкостного сепаратора 1. В верхней части газожидкостного сепаратора 1 размещен нагнетательный газовый клапан 6, отделяющий газожидкостной сепаратор 1 от газопровода высокого давления 8.

Реверсивный жидкостной насос 3 оснащен регулируемым электроприводом 11 с частотным регулятором 12.

Между соплом 9 эжектора и реверсивным жидкостным насосом 3 установлен обратный клапан 13, пропускающий поток в направлении от реверсивного жидкостного насоса 3 к соплу 9 эжектора, при этом реверсивный жидкостной насос 3 постоянно сообщается с источником рабочей жидкости 10. В качестве источника рабочей жидкости 10 может быть использован трубопровод, через который постоянно циркулирует рабочая жидкость, как показано на чертеже. Верхняя часть газожидкостного сепаратора 1 заполнена газом, нижняя часть газожидкостного сепаратора 1 заполнена рабочей жидкостью, на чертеже показана граница раздела 14 между газообразной фазой и жидкой фазой.

Газожидкостной сепаратор 1 оснащен уровнемерной выносной камерой 15, гидравлически связывающей верхнюю и нижнюю части газожидкостного сепаратора 1, в которой размещен поплавок 16, а на внешней стенке установлены два датчика уровня 18 и 19 на расстоянии друг от друга, соответствующем минимально и максимально допустимым нижнему и верхнему положениям уровня жидкости в газожидкостном сепараторе 1. Датчики уровня 18 и 19 связаны посредством информационных линий связи 20 и 21 соответственно с блоком управления 22, который связан с помощью управляемой линии связи 23 с частотным регулятором электропривода 12.

Возможен вариант исполнения компрессорной установки, когда к поплавку 16 прикреплен постоянный магнит 17, уровнемерная выносная камера 15 выполнена из немагнитного материала, а датчики уровня 18 и 19, размещенные на внешней стенке уровнемерной выносной камеры 15, выполнены в виде герконов.

Местоположение для каждого датчика уровня выбирают из условия обеспечения синхронной работы газожидкостного сепаратора и реверсивного жидкостного насоса с колебаниями уровня жидкости в газожидкостном сепараторе, что должно исключить проявления гидроударов при верхнем положении уровня жидкости в рабочей камере и прорывов газа в реверсивный жидкостной насос при нижнем положении уровня жидкости в рабочей камере.

Таким образом, обеспечивается исключение попадания газа в проточную часть жидкостного насоса и жидкости в газопровод высокого давления, повышается надежность работы установки и ее уровень безопасности, исключаются аварийные ситуации в процессе эксплуатации.

Компрессорная установка работает следующим образом.

Реверсивный жидкостной насос 3 работает в циклическом режиме с изменением направления потока на каждой половине цикла. Реверсивный жидкостной насос 3 подает рабочую жидкость из рабочей камеры 1 через обратный клапан 13 в сопло 9 эжектора, при этом частично рабочая жидкость поступает в трубопровод 10. За счет энергии струи жидкости на входе камеры смешения 2 эжектора понижается давление и в камеру смешения 2 поступает газ из газопровода низкого давления 7 через открытый всасывающий газовый клапан 5. На выходе камеры смешения 2 эжектора повышается давление в потоке смеси жидкости и газа за счет преобразования кинетической энергии жидкости в потенциальную энергию, что сопровождается повышением давления при понижении скорости течения газожидкостного потока. Через перепускной трубопровод 4 сжатый газ вместе с жидкостью поступает в рабочую камеру 1, где реализуется процесс сепарации с разделением газожидкостной смеси на жидкую и газовую фазу. Жидкость скапливается в нижней части рабочей камеры 1, а газ в верхней части, как в известных гравитационных сепараторах. Сжатый газ накапливается в верхней части рабочей камеры 1, что приводит к смещению границы раздела 14 в направлении сверху вниз. При этом жидкость из рабочей камеры 1 вытесняется реверсивным жидкостным насосом 3 в трубопровод 10.

Когда граница раздела 14 приблизится к минимально допустимому нижнему положению уровня жидкости в рабочей камере 1, в уровнемерной выносной камере 15 поплавок 16 опустится до соответствующего уровня, где расположен нижний датчик уровня 18. После этого происходит передача сигнала от датчика уровня 18 по информационной линии связи 20 на блок управления 22, а далее через управляющую линию связи 23 поступает сигнал на частотный регулятор 12 для отключения жидкостного насоса 3, либо изменения направления вращения электропривода 11. В последнем случае компрессорная установка продолжит работать, а жидкость из трубопровода 10 при этом начнет перекачиваться реверсивным жидкостным насосом 3 в направлении к рабочей камере 1. Это приведет к увеличению давления в рабочей камере 1, соответственно обратный клапан 13 закроется и закроется также всасывающий газовый клапан 5. Поток в камере смешения 2 эжектора останавливается. Таким образом, осуществляется отключение эжектора на время заполнения рабочей камеры жидкостью. В это время граница раздела 14 начнет смещаться в направлении снизу-вверх. При этом продолжится сжатие газа в рабочей камере 1, что сопровождается соответствующим ростом давления. При смещении границы раздела 14 вверх наступит момент, когда давление в рабочей камере 1 сравняется с давлением в газопроводе высокого давления 8. Такое выравнивание давления приведет к открытию нагнетательного газового клапана 6. При дальнейшем смещении границы раздела 14 вверх сжатый газ из рабочей камеры 1 вытесняется в газопровод высокого давления 8 через открытый нагнетательный газовый клапан 6. Окончание цикла вытеснения газа обуславливается перемещением поплавка 16 до верхнего датчика уровня 19, расположение которого соответствует максимально допустимому верхнему положению уровня жидкости в рабочей камере 1. После этого происходит передача сигнала от датчика уровня 19 по информационной линии связи 21 на блок управления 22 и далее через управляющую линию связи 23 на частотный регулятор 12. Электропривод 11 изменяет направление вращения ротора жидкостного насоса 3 и, соответственно, изменяется направление потока жидкости в газожидкостном сепараторе 1 на противоположное направление. Цикл повторяется.

Преимуществом заявляемого устройства является повышение надежности и уровня безопасности работы компрессорной установки, поскольку обеспечивается синхронная работа газожидкостного сепаратора и реверсивного жидкостного насоса при колебаниях уровня жидкости в газожидкостном сепараторе, при этом исключается смещение границы раздела 14 ниже минимально допустимого значения при срабатывании датчика уровня 18. Исключается попадание газа в реверсивный жидкостный насос 3. Также исключается попадание жидкости в газопровод высокого давления 8 при смещении границы раздела 14 в направлении снизу-вверх, при срабатывании датчика уровня 19 в максимально допустимом верхнем положении уровня жидкости. Помимо повышения безопасности работ при использовании заявляемого устройства обеспечивается более высокое качество сжимаемого газа по критерию влагосодержания в газе.


КОМПРЕССОРНАЯ УСТАНОВКА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 44.
27.11.2019
№219.017.e722

Бицеолитный катализатор изомеризации ароматических углеводородов с-8

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен микро-мезопористый катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, мас.%: цеолит типа ZSM-5 -10,0-75,0, цеолит типа ZSM-12 - 5,0-70,0, гамма-оксид...
Тип: Изобретение
Номер охранного документа: 0002707179
Дата охранного документа: 25.11.2019
29.11.2019
№219.017.e77d

Способ оценки профиля фазовой проницаемости в нефтяных и газовых эксплуатационных скважинах

Изобретение относится к области нефтедобывающей промышленности и предназначено для определения проницаемости продуктивных интервалов, вскрывающих низкопроницаемые коллекторы. Технической результат заключается в получение глубинного профиля достоверных значений фазовых проницаемостей, пригодных...
Тип: Изобретение
Номер охранного документа: 0002707311
Дата охранного документа: 26.11.2019
06.12.2019
№219.017.ea01

Способ резервного энергообеспечения комплекса по производству сжиженного природного газа

Изобретение может быть использовано в области нефтехимии. Способ резервного энергообеспечения комплекса по производству сжиженного природного газа заключается в том, что при снижении количества исходного природного газа, поступающего на питание электростанции собственных нужд, ниже допустимого...
Тип: Изобретение
Номер охранного документа: 0002707988
Дата охранного документа: 03.12.2019
06.12.2019
№219.017.ea19

Компрессорная установка

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного...
Тип: Изобретение
Номер охранного документа: 0002707989
Дата охранного документа: 03.12.2019
25.12.2019
№219.017.f1e4

Установка для охлаждения природного газа на компрессорных станциях

Изобретение относится к области транспортировки природного газа и предназначено для снижения температуры транспортируемого газа после сжатия в нагнетателе газоперекачивающего агрегата перед подачей его в магистральный газопровод. Установка для охлаждения природного газа на компрессорных...
Тип: Изобретение
Номер охранного документа: 0002709998
Дата охранного документа: 23.12.2019
17.01.2020
№220.017.f658

Аэрозольная смазка

Изобретение относится к созданию композиции многоцелевой пластичной смазки, применяемой в виде аэрозоля в труднодоступных узлах трения механизмов различного назначения мобильной техники и стационарного оборудования. Сущность: аэрозольная смазка содержит мас. %: базовое масло - 3,75-28,5,...
Тип: Изобретение
Номер охранного документа: 0002711021
Дата охранного документа: 14.01.2020
17.01.2020
№220.017.f660

Многоцелевая пластичная смазка для тяжелонагруженных узлов трения

Изобретение относится к композиции многоцелевой пластичной смазки для тяжелонагруженных узлов трения, которая может быть использована в механизмах различного назначения мобильной техники и стационарного оборудования. Многоцелевая пластичная смазка содержит, мас.%: загуститель - 4,0-25,0;...
Тип: Изобретение
Номер охранного документа: 0002711022
Дата охранного документа: 14.01.2020
05.02.2020
№220.017.fe2a

Способ определения внутренних остаточных напряжений и устройство для его осуществления

Изобретение относится к области измерительной техники и касается способа определения внутренних остаточных напряжений. Способ включает в себя освещение поверхности излучением лазера, рассеянного на опорный и предметный лучи, формирование спекл-интерферограмм путем вычитания записанных на...
Тип: Изобретение
Номер охранного документа: 0002712929
Дата охранного документа: 03.02.2020
23.02.2020
№220.018.04f9

Компрессорная установка

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин. Установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора,...
Тип: Изобретение
Номер охранного документа: 0002714989
Дата охранного документа: 21.02.2020
20.04.2020
№220.018.15fc

Способ модификации мембран для ультрафильтрации водных сред

Изобретение относится к мембранной технологии и может найти применение для очистки и разделения воды и водных растворов в пищевой, фармацевтической, нефтехимической и других отраслях промышленности, при водоподготовке и создании особо чистых растворов. Способ модификации мембран для...
Тип: Изобретение
Номер охранного документа: 0002719165
Дата охранного документа: 17.04.2020
Показаны записи 11-11 из 11.
16.07.2020
№220.018.32c0

Беспилотный летательный аппарат

Изобретение относится к области авиации. Беспилотный летательный аппарат содержит крыло, выполненное по аэродинамической схеме «летающее крыло», органы управления, выполненные в виде вертикального оперения и размещенного на опоре переднего горизонтального оперения, силовую установку, оснащенную...
Тип: Изобретение
Номер охранного документа: 0002726511
Дата охранного документа: 14.07.2020
+ добавить свой РИД