×
17.10.2019
219.017.d647

Способ получения гранулированного материала для очистки и обеззараживания питьевой воды и гранулированный материал, полученный этим способом

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложен способ получения гранулированного материала для очистки и обеззараживания питьевой воды, включающий стадию смешения сорбирующих и обеззараживающих веществ и полимерного связующего и стадию термического сжатия исходной смеси, отличающий тем, что в качестве сорбирующего вещества используют активированный уголь с йодным числом более 1000 мг/г, а стадию термического сжатия исходной смеси мелкодисперсных сорбирующих и обеззараживающих веществ и полимерного связующего проводят методами экструзии или горячего спекания при температуре на (10-40)°С выше температуры размягчения полимерного связующего и при сжатии смеси, составляющей (12-25)%, при соотношении активированный уголь:обеззараживающее вещество:полимерное связующее (0,1-1):(74-84,9):(10-25) мас. %. с последующим дроблением полученного пористого блочного материала и его фракционированием. В результате получают гранулированный материал с размером гранул (0,3-2,0) мм, с пористостью в гранулах - (1-5) мкм. Технический результат: получен высокопористый гранулированный материал для очистки и обеззараживания питьевой воды с высокими эксплуатационными характеристиками по очистке воды до 96% на протяжении повышенного ресурса выделения в воду катионов серебра, достигающего 45000 объемов воды на 1 объем материала. Предлагаемое изобретение может найти применение в напорных и безнапорных фильтрах для очистки воды. 2 н. и 5 з.п. ф-лы, 2 табл.
Реферат Свернуть Развернуть

Изобретение относится к гранулированным материалам, предназначенным для очистки и обеззараживания воды и используемым в безнапорных (гравитационных) напорных (работающих от давления, создаваемого насосом или водопроводной сетью) фильтрах. В настоящее время широкое распространение в безнапорных и напорных фильтрах получили гранулированные сорбирующие материалы -активированные угли (например, патенты DE 2919901, 1980 год, патент WO 1998017582, 1998 год, патент RU 2236279, 2004 год, патент WO 2005118481, 2005 год), эффективно очищающие воду от хлора и органических, в том числе, хлорорганических примесей. Однако для фильтров с активированными углями характерно появление в отфильтрованной воде при ее длительном нахождении в фильтре бактериальных форм микроорганизмов в количествах, превышающих установленные нормативы (СанПиН 2.1.4.1074-01 Санитарно-эпидемиологические правила и нормативы). Это делает такую воду небезопасной для человеческого организма.

Для предотвращения роста микроорганизмов в отфильтрованной воде в процессе ее нахождения в корпусе фильтра и фильтрующего патрона (то есть, для обеспечения ее обеззараживания в форме бактериостатического эффекта) в воду вводят различные бактерицидные соединения, например, четвертичные аммониевые соли, бриллиантовый зеленый, йод и его соединения, серебро и др., которые выделяются из наполнителей фильтровальных патронов фильтров.

Наибольшее распространение для этих целей получили серебросодержащие материалы, обеспечивающий бактериостатический эффект в низких концентрациях, составляющих (5-20) мкг/л, существенно меньше ПДК (50 мкг/л).

В большинстве безнапорных и напорных фильтров в качестве серебросодержащих материалов используют серебросодержащие угли или смесь серебросодержащего и несеребросодержащего углей. Серебросодержащие угли получают пропиткой углей водорастворимым соединением серебра, например, нитратом серебра, или аммиачно-нитратным соединением серебра (например, патенты RU 2023662, 1994 год, RU 2145259, 2000 год), содержание которого в углях составляет (0,1-0,4) мас. %. Такие угли при контакте с водой на разных стадиях ресурса работы фильтра выделяют в нее неравномерное количество серебра: от 100 мкг/л в начале работы фильтра и при длительных перерывах в его работе до 2 мкг/л в конце работы фильтра или при его продолжительных перерывах в его работе, что делает воду токсичной в начале работы и не гарантированно обеззараженной в конце работы фильтра. Столь неравномерное выделение серебра в воду на протяжении ресурса обусловлено нахождением большой части серебра в активированном угле в микропорах, трудно доступных для контакта с водой в условиях высокодинамической фильтрации, имеющей место при фильтрации воды гравитационными и напорными фильтрами, при которой процесс растворения серебросодержащего соединения лимитируется диффузией воды в микропоры и из микропор.

Из уровня техники известно использование в качестве серебросодержащего компонента фильтров гранулированных серебросодержащих сильнокислослотных сульфокатионитов, в которых серебро содержится либо в катионной форме, либо в виде осажденного на катионите малорастворимого соединения серебра - хлорида, бромида, йодида, карбоната или оксида серебра (патенты RU 2138449, 27.09.1999 год, RU 2043310, 10.09.1995 год). Для такого типа серебросодержащих материалов характерны те же проблемы, что и для серебросодержащих углей, также обусловленные нахождением соединения серебра в мелких порах катионита и лимитированием выделения серебра в обрабатываемую воду процессом диффузии.

Известен высоконаполненный серебросодержащий гранулированный материал для безнапорных и напорных фильтров для обеззараживания или для обеспечения бактериостатического эффекта воды и сорбционной загрузки. Высоконаполненный серебросодержащий гранулированный материал содержит (мас. %): полиэтилен - 35-45, полиэтиленовый воск - 1-6, шунгит - 38-55, сульфат серебра - 0,5-6, хлорид натрия - 1-5, стеарат кальция - 0,5-2. (патент RU 2320543, 27.03.2008 год) (прототип). Такой материал изготавливают методом экструзии при температуре (165±15)°С в виде гранул диаметром 2 мм и длиной (2-8) мм, представляющих собой монолитный полимерный материал с расположенными на его поверхности и в объеме сульфатом серебра и сорбентом - шунгитом, который помимо сорбирующей функции выполняет функцию катализатора и бактерицида.

Существенным недостатком материала - прототипа является то, что он не обеспечивает достаточный с точки зрения потребителя ресурс обеззараживания воды (бактериостатический эффект) гравитационными и напорными фильтрами из-за следующих причин:

- заявленный в патенте-прототипе высоконаполненный серебросодержащий гранулированный материал представляет собой монолитный материал, наполненный мелкодисперсными частицами хорошо растворимого серебросодержащего материала и сорбента - шунгита, в котором вследствие условий его изготовления - при температуре выше температуры плавления полимера - в виде расплава в объеме отсутствуют поры. У такого материала только частицы серебросодержащего вещества, расположенные на поверхности и в подповерхностном слое подвергаются растворению и переходу в обрабатываемую воду. Частицы серебросодержащего вещества, расположенные в объеме монолитного материала, из-за диффузионных трудностей практически не подвергаются растворению и миграции в обрабатываемую воду;

- используемый в качестве серебросодержащего вещества сульфат серебра обладает хорошей растворимостью в воде (7,9 г/л), что приводит к его быстрому растворению с поверхности гранул материала и, соответственно, исчерпанию, уже в начале ресурса и низкому растворению и выделению в обеззараживаемую воду из-за его затрудненной диффузии из объема монолитного гранулированного материала в последующем.

Технической задачей изобретения является создание высокопористого гранулированного материала для очистки и обеззараживания питьевой воды гравитационными и напорными фильтрами, обеспечивающего ее обеззараживание за счет стабильного выделения катионов серебра в обрабатываемую воду на протяжении всего ресурса работы фильтра. Поставленная техническая задача достигается предлагаемым способом получения гранулированного материала для очистки и обеззараживания питьевой воды, включающим стадию смешения сорбирующих и обеззараживающих веществ и полимерного связующего и стадию термического сжатие исходной смеси и, отличающий тем, что в качестве сорбирующего вещества используют активированный уголь с йодным числом более 1000 мг/г, а стадию термического сжатия исходной смеси мелкодисперсных сорбирующих, обеззараживающих веществ и полимерного связующего проводят методами экструзии или горячего спекания при температуре на (10-40)°С выше температуры размягчения полимерного связующего и при сжатии смеси, составляющей (12-25)%, при соотношении активированный уголь: обеззараживающее вещество: полимерное связующее (0,1-1):(74-84,9):(10-25) мас. %. с последующим дроблением полученного пористого блочного материала и его фракционирования.

В качестве обеззараживающего вещества используют, например, малорастворимые соединения серебра или их смеси, а в качестве полимерного связующего - полимеры, например, из классов полиолефинов и/или полиэфиров и/или их сополимеров. Активированный уголь, обеззараживающее вещество и полимерное связующее используют с размером частиц (0,05-0,5) мм, предпочтительно (0,07-0,15) мм.

Дробление полученного пористого блочного материала проводят методом раздавливания на валковой дробилке, а фракционирование дробленого материала проводят методом сухого рассеивания и использованием сит с размером ячейки (0,3-2,0) мм. Полученный предлагаемым способом гранулированный материал для очистки и обеззараживания питьевой воды содержит мелкодисперсные частицы сорбирующего и обеззараживающего веществ, соединенные в гранулы размером (0,3-2,0) мм и пористостью в гранулах - (1-5) мкм полимерным связующим и обеспечивает в составе фильтрующих элементов безнапорных и напорных фильтров эффективную очистку воды от хлора и органических, в том числе, хлорорганических соединений и ее обеззараживание за счет выделения катионов серебра в количествах, обеспечивающих бактериостатических эффект и не превышающих ПДК на содержание серебра в питьевой воде, на протяжении повышенного ресурса, достигающего 10000 объемов обеззараженной воды на 1 объем материала.

Заявленный гранулированный материал, в отличие от монолитного материала - прототипа, представляет собой высокопористую структуру, в которой мелкодисперсные частицы сорбента и обеззараживающего вещества - малорастворимого соединения серебра - скреплены мелкодисперсными частицами связующего - полимерного материала. Обрабатываемая вода в таком материале легко проходит в его поры, расположенные по всему объему, и при этом контактирует с большой поверхностью мелкодисперсных частиц сорбирующего и обеззараживающего вещества, что обеспечивает высокоэффективную очистку воды и выделение серебра в воду. Образование высокопористой структуры заявляемого гранулированного материала, помимо состава и соотношения компонентов, обеспечивает технология его получения, заключающаяся в термическом сжатии исходной смеси на (10-25)% при температуре на (10-40)°С выше температуры размягчения полимерного связующего, тогда как процесс получения материала - прототипа проводят экструзией при температуре на (165±15)°С, что выше температуры плавления полиэтилена, то есть, если заявляемый гранулированный материал получают при использовании полимера -связующего в высокоэластическом состоянии и это фактически приводит к «приклеиванию» к нему частиц сорбирующего и минерализующего вещества с образованием пористой структуры, то в случае прототипа, полимер - связующее находится в расплавленном состоянии и частицы сорбирующего и обеззараживающего веществ внедряются в расплав полимера с образованием монолитного полимерного материала, в котором очистка воды и выделение в воду серебра осуществляется практически только мелкодисперсными частицами сорбирующего вещества и обеззараживающего, находящихся на поверхности и приповерхностном объеме гранул материала.

Для обеспечения максимально доступной для сорбции и растворения поверхности частиц сорбирующего и обеззараживающего веществ процесс его изготовления проводят при температуре, на (10-40)°С выше температуры размягчения полимерного связующего. При температуре, ниже чем на 10°С температуры размягчения полимерного связующего, не происходит образование механически прочного блочного материала, а при температуре, выше чем на 40°С температуры размягчения полимерного связующего, происходит блокирование значительной поверхности сорбента и обеззараживающего материала в результате затекания полимерного связующего.

Выбор диапазона степени сжатия исходной смеси компонентов гранулированного материала (12-25)% обусловлен тем, что в этом диапазоне обеспечивается получение механически прочного пористого материала. При степени сжатия менее 12% образующийся материал не обладает необходимой механической прочностью и крошится в процессе фильтрации. При степени сжатия более 25% образующийся материал содержит мелкие поры, что затрудняет прохождение через них воды. Выбор полимерного связующего из класса полиолефинов (например, полиэтилена низкого давления, полиэтилена высокого давления, полипропилена) и полиэфиров (полиэтилентерефталата) или их сополимеров (например, сополимера полиэтилена с винилацетатом) обусловлен, с одной стороны, их химической инертностью и нерастворимостью в воде, с другой стороны, достаточно низкими температурами размягчения, позволяющими интенсифицировать процесс изготовления пористого блочного материала.

Для обеспечения эффективной очистки воды от хлора, органических и хлорорганических соединений пористый блочный материал изготавливают с использованием активированных углей с йодным числом более 1000 мг/л, так как такие угли обеспечивают эффективную сорбцию и, следовательно, очистку воды на протяжении значительного ресурса от указанных загрязнителей, а все используемые компоненты (сорбент, обеззараживающее вещество и полимерное связующее) используют в порошкообразной форме с размером частиц (0,05-0,5) мм, предпочтительно (0,07-0,15) мм. Размер частиц активированного угля, обеззараживающего вещества и полимерного связующего менее 0,05 мм приводит к образованию мелких пор в материале, затрудняющих прохождение через них обрабатываемой воды. При размере частиц активированного угля, обеззараживающего вещества и полимерного связующего более 0,5 мм снижается эффективность очистки воды выделения в воду серебра за счет уменьшения реальной поверхности фильтрации (сорбции) частиц сорбента.

Выбор диапазона пор заявляемого гранулированного материала, составляющий (1-5) мкм обусловлен возможностью прохождения через эти поры воды (при размере пор менее 1 мкм этот процесс затруднен) и оптимальным временем и поверхностью контакта воды с частицами сорбирующего и обеззараживающего веществ (при размере пор более 5 мкм часть воды будет проходить через материал без контакта с сорбирующими и обеззараживающими частицами). Использование в качестве обеззараживающих веществ малорастворимых серебросодержащих соединений обусловлено принципом растворения таких соединений в воде, основанном на малой величине их произведения растворимости (10-10-10-16). Эти величины произведений растворимости обеспечивают возможность получения концентраций таких веществ в воде порядка (5-40) мкг/л, что соответствует существующим нормативам на питьевую воду.

Заявляемый гранулированный материал для очистки и обеззараживания питьевой воды может быть использован в составе фильтрующих элементов безнапорных и напорных фильтров как добавка к основному наполнителю фильтрующего элемента или как основной материал фильтрующего элемента.

Техническим результатом предлагаемого изобретения является получение пористого гранулированного материала с размером гранул (0,3-2,0) мм и пористостью в гранулах - (1-5) мкм, содержащего мелкодисперсные частицы сорбирующих и обеззараживающих веществ, соединенных в гранулы полимерным связующим, с высокими эксплуатационными характеристиками по очистке воды до 96% на протяжении повышенного ресурса выделения в воду катионов серебра, достигающего 45000 объемов воды на 1 объем материала.

Ниже приведен конкретный пример изготовления заявленного гранулированного материала для очистки и обеззараживания воды, который раскрывает суть заявленного способа, но не является исчерпывающим.

Пример.

В смесителе путем перемешивания готовят гомогенную смесь из сорбирующего и обеззараживающего веществ и связующего (компоненты смеси) с размером частиц каждого компонента (0,07-1,0) мм, состоящую из 89,9 мас. % активированного кокосового угля с йодным числом 1050 мг/г, 0,1 мас. %, хлорида серебра и 10 мас. % полиэтилентерефталата (ПЭТФ) с температурой размягчения 115°С. Полученную смесь экструдируют при температуре 135°С и при сжатии 12%. Изготовленный экструдированием пористый блочный материал в виде полого цилиндра подвергают дроблению методом раздавливания на валковой дробилке с последующим фракционированием методом сухого рассеивания с использованием сит с размером ячейки (0,3-2,0) мм. В результате получают гранулированный материал с размером гранул (0,3-2,0) мм, содержащий 89,9 мас. % активированного угля, 0,1 мас. % хлорида серебра (произведение растворимости 1,8×10-10) и 10 мас. % связующего. Размер пор полученного гранулированного материала, определенный методом ртутной порозиметрии, составляет 2-4 мкм. Для оценки эффективности очистки воды и ее минерализации 1 г изготовленного гранулированного материала размещали в кассете гравитационного фильтра кувшинного типа и проливали через нее водопроводную воду, дополнительно контаминированную хлором и хлороформом в концентрациях, равных 2 ПДК этих веществ для питьевой воды. Эффективность очистки воды кассетой с заявляемым гранулированным материалом и выделение катионов серебра проводили по ГОСТ 31952-2012 Устройства водоочистные. Общие требования к эффективности и методы ее определения.

В таблице 1 приведены примеры конкретных составов гранулированного материала для очистки и обеззараживания питьевой воды и способов его получения, а в таблице 2 представлены результаты их испытаний по эффективности очистки и выделения катионов серебра.

Приведенные примеры дают представление о характеристиках заявляемого фильтрующего устройства, но не являются исчерпывающими.

Как следует из приведенных в таблице 2 результатов, предлагаемая совокупность всех заявленных признаков изобретения, благодаря своему составу и технологии изготовления, позволяет получить гранулированный материал для очистки и обеззараживания питьевой воды в составе фильтрующих элементов гравитационных и напорных фильтров, обеспечивающий высокие эффективность очистки, выделения катионов серебра в воду и ресурс.

Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
17.10.2019
№219.017.d657

Способ получения гранулированного материала для очистки и минерализации питьевой воды и гранулированный материал, полученный этим способом

Предложен способ получения гранулированного материала для очистки и минерализации питьевой воды, включающий стадию смешения сорбирующих, минерализующих веществ и полимерного связующего и стадию термического сжатия исходной смеси и отличающийся тем, что в качестве сорбирующего вещества...
Тип: Изобретение
Номер охранного документа: 0002703157
Дата охранного документа: 15.10.2019
13.12.2019
№219.017.ed0c

Фильтрующее устройство гравитационного фильтра для умягчения и очистки питьевой воды

Изобретение предназначено для умягчения и очистки питьевой воды и может быть использовано для улучшения качества очистки питьевой воды в бытовых фильтрах кувшинного типа. Предложено фильтрующее устройство гравитационного фильтра для умягчения и очистки питьевой воды, содержащее систему фиксации...
Тип: Изобретение
Номер охранного документа: 0002708855
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed22

Гравитационный фильтр для очистки и умягчения или минерализации питьевой воды

Изобретение предназначено для очистки и умягчения или минерализации питьевой воды и может быть использовано для улучшения качества очистки питьевой воды в бытовых фильтрах кувшинного типа. Гравитационный фильтр для очистки и умягчения или минерализации питьевой воды содержит емкость для...
Тип: Изобретение
Номер охранного документа: 0002708856
Дата охранного документа: 11.12.2019
19.12.2019
№219.017.eee7

Фильтрующий модуль гравитационного фильтра для очистки питьевой воды

Изобретение предназначено для очистки питьевой воды и может быть использовано для улучшения качества очистки питьевой воды в бытовых фильтрах кувшинного типа. Фильтрующий модуль гравитационного фильтра содержит систему фиксации фильтрующего модуля в воронке фильтра, включающую отверстие для...
Тип: Изобретение
Номер охранного документа: 0002709315
Дата охранного документа: 17.12.2019
29.02.2020
№220.018.0732

Минерализующий картридж напорного фильтра

Изобретение предназначено для минерализации питьевой воды в напорных фильтрах. Минерализующий картридж напорного фильтра для питьевой воды содержит пластиковый корпус 1 с узлами ввода 2 и вывода 3 воды с расположенным в нем минерализующим элементом 4. Минерализующий элемент 4 выполнен в форме...
Тип: Изобретение
Номер охранного документа: 0002715155
Дата охранного документа: 25.02.2020
31.07.2020
№220.018.399a

Пористый блочный фильтрующий материал для очистки питьевой воды от железа и способ его получения

Изобретение относится к пористому блочному фильтрующему материалу для очистки питьевой воды от железа, содержащему мелкодисперсные частицы активированного угля с размером частиц 0,15-0,3 мм, удельной поверхностью фильтрации от 800 м/г, йодным числом от 800 мг/г и статической обменной емкостью...
Тип: Изобретение
Номер охранного документа: 0002728331
Дата охранного документа: 29.07.2020
Показаны записи 1-10 из 17.
20.01.2013
№216.012.1ba1

Фильтровальный патрон бытового фильтра для очистки питьевой воды

Изобретение предназначено для получения доброкачественной питьевой воды и может быть использовано в составе сменного фильтровального патрона бытового фильтра для очистки воды из водопровода и природных пресноводных источников. Фильтровальный патрон состоит из последовательно расположенных по...
Тип: Изобретение
Номер охранного документа: 0002472567
Дата охранного документа: 20.01.2013
20.04.2013
№216.012.366f

Способ получения растворов различной концентрации сернокислого кадмия

Изобретение может быть использовано в аналитической химии. Для получения раствора сульфата кадмия амальгаму кадмия обрабатывают раствором сернокислой меди при соотношении ионов меди в растворе и кадмия в амальгаме, равном 1:2,5. Изобретение позволяет приготовить растворы сульфата кадмия...
Тип: Изобретение
Номер охранного документа: 0002479488
Дата охранного документа: 20.04.2013
27.01.2014
№216.012.9c06

Способ монтажа стены из строительных панелей

Изобретение относится к строительству, а именно к области строительных конструкций, в частности к строительным элементам и их монтажу. Технический результат: улучшение эксплуатационных и технологических свойств панели, простота изготовления, снижение трудоемкости сборки, повышение шумоизоляции,...
Тип: Изобретение
Номер охранного документа: 0002505648
Дата охранного документа: 27.01.2014
20.11.2014
№216.013.090a

Фильтрующий патрон для подготовки питьевой воды из источника с низким содержанием ионов кальция, магния и фтора и повышенным содержанием ионов железа

Изобретение предназначено для получения доброкачественной питьевой воды. Фильтрующий патрон состоит из последовательно соединенных: узла подачи очищаемой воды, включающего оболочку с радиальными прорезями и снабженного средством крепления; узла фильтрации, выполненного в виде полого цилиндра,...
Тип: Изобретение
Номер охранного документа: 0002533715
Дата охранного документа: 20.11.2014
20.11.2015
№216.013.90fa

Индивидуальное средство для очистки жидкости

Изобретение предназначено для получения доброкачественной питьевой воды и может быть использовано для очистки воды из водопровода и природных пресноводных источников от механических взвесей, органических и неорганических соединений с сопутствующим ее обеззараживанием, в том числе в полевых...
Тип: Изобретение
Номер охранного документа: 0002568730
Дата охранного документа: 20.11.2015
25.08.2017
№217.015.bff6

Минерализующий картридж для питьевой воды и способ его применения

Изобретение предназначено для обеспечения необходимого содержания ионов кальция, магния и фтора в питьевой воде. Минерализующий картридж состоит из последовательно соединенных узла ввода воды, узла минерализации, выполненного в виде полого цилиндра, на основаниях которого установлены...
Тип: Изобретение
Номер охранного документа: 0002616677
Дата охранного документа: 18.04.2017
02.08.2018
№218.016.7765

Питательный субстрат для выращивания растений

Изобретение относится к сельскому хозяйству, в частности к питательным субстратам для растениеводства закрытого и открытого грунта, которые содержат полный набор питательных элементов для роста растений в высокой концентрации и предназначены для длительного использования без дополнительного...
Тип: Изобретение
Номер охранного документа: 0002662772
Дата охранного документа: 30.07.2018
11.10.2018
№218.016.8fd4

Способ определения количества жидкости, вытекающей из ёмкости произвольной формы

Изобретение относится к конструкциям корпусов фильтров, в частности к устройствам для определения засорения и индикаторам условий фильтрования, и может быть использовано для улучшения качества очистки питьевой воды в бытовых фильтрах кувшинного типа. Предложен способ определения количества...
Тип: Изобретение
Номер охранного документа: 0002669276
Дата охранного документа: 09.10.2018
01.03.2019
№219.016.cf8e

Светодиодный светильник с высокоэффективным конвекционным охлаждением

Светодиодный светильник относится к осветительным устройствам и может быть использован для уличного, промышленного, бытового и архитектурно-дизайнерского освещения. Технический результат, на достижение которого направлено настоящее изобретение, заключается в создании конструкции светодиодного...
Тип: Изобретение
Номер охранного документа: 0002433577
Дата охранного документа: 10.11.2011
11.03.2019
№219.016.dde0

Способ определения количества электропроводящей жидкости и комплекс оборудования для его реализации

Изобретение относится к области гидрометрии и может быть использовано, в частности, для определения количества воды, прошедшей через бытовой фильтр. Сущность: способ заключается в том, что емкость снабжают рядом последовательно расположенных по высоте 5-16 электродов-сенсоров и одним...
Тип: Изобретение
Номер охранного документа: 0002460972
Дата охранного документа: 10.09.2012
+ добавить свой РИД