×
12.10.2019
219.017.d51a

СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩЕГО КОАГУЛЯНТА ИЗ ОТХОДОВ ПРОИЗВОДСТВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано при водоочистке. Способ получения железосодержащего коагулянта включает окисление железа (II) в железо (III) путем окисления отработанных травильных растворов. В реактор, оборудованный мешалкой и распылителем воздуха, подают отработанный сернокислый раствор травления металла, серную кислоту и отход хлорида кальция. Полученную суспензию окисляют воздухом, который подают в количестве 1,5-2,0 г/(л⋅ч) при температуре 20-30°C до рН 3,0-3,5. Затем смесь нейтрализуют отходным хлоридом кальция при температуре 70-75°С до рН 7,0-7,5. При этом образуется хлорид железа (III) и сульфат кальция. Полученную суспензию направляют на фильтр-пресс, где отделяют осадок и охлаждают его до температуры 40-50°С. Получают гипс, который подают в сушилку «кипящего слоя», где его подвергают сушке при температуре 150-180°C и одновременно измельчению до 4-6 мм. Отделенный фильтрат подвергают вакуумной кристаллизации при температуре 80-90°C. Полученные кристаллы отделяют на центрифуге, подают в сушилку «кипящего слоя» и сушат при температуре 100-110°C, одновременно измельчая до 10-15 мкм. Получают активный железосодержащий коагулянт - кристаллический хлорид железа (III). Фильтрат возвращают в реактор. Изобретение позволяет получить коагулянт, не содержащий примеси, из железо- и кальцийсодержащих отходов производств, улучшить экологию. 1 ил., 1 табл., 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу получения железосодержащего коагулянта из отработанных солянокислых и сернокислых травильных растворов (OTP) и может быть применено во многих отраслях промышленности для очистки сточных вод и водоочистке городских сооружений.

Известно, что в процессах водоочистки в качестве коагулянта, кроме сульфата алюминия, применяют также сульфаты и хлориды железа (II) и (III), которые по качеству не уступают сульфату алюминия (время коагуляции, мин.: Al2(SO4)3 -18, FeCl3 -14) [Ахметова, И.Г. Разработка новых коагулянтов для процессов водоподготовки ТЭС; дис. к.т.н. / И.Г. Ахметова. - Казань, 2003. - 125 с].

Известен способ [Пат. РФ №2264352, МПК C01F 7/00, C02F 1/52] использования смешанного алюможелезного коагулянта (при атомном отношении железа к алюминию, равном 0,1-0,2) позволяет снизить дозу Al2O3 на 20% и ускорить процесс хлопьеобразования. Процесс растворения гидроксида алюминия и хлорного железа в серной кислоте осуществляют при 100°С.

Недостатками этого способа являются:

1. Трудоемкость и много стадийность и, как следствие, низкий экономический эффект при водоочистке.

Известен способ растворения оксидов железа (травление изделий из железа) в серной и соляной (более активной) кислотах, а также в их смесях, содержащих 5-10% H2SO4 и 10-15% HCl при температурах 40-60°С [Прикладная электрохимия.- М.: Химия, 1975, с. 372]. Недостатком способа является необходимость применения соляной кислоты. Кроме того, соляная кислота не удобна в обращении из-за токсичности паров, сильного коррозионного воздействия на аппаратуру и трубопроводы, изготовляемые из стали, и необходимости замены материалов для них на более стойкие.

Известен способ получения хлорида железа (III) утилизацией отработанных солянокислых травильных растворов окислением хлорида железа (II) хлором [Пат. США №4066748, C01G 49/10 (20060101). 1978].

Недостатками этого способа являются:

1. Трудоемкость и энергоемкость процесса, обусловленные необходимостью выделения из концентрированных водных растворов кристаллического хлорида железа (III), испарением воды и применением токсичных окислителей -хлора.

2. Применение агрессивного и сильно токсичного окислителя - хлора делает этот процесс не технологичным.

Известен также способ получения коагулянта путем растворения железосодержащего отхода черной металлургии - магнетита - в серной кислоте в присутствии хлоридсодержащего соединения - треххлористого железа, взятого из расчета 0,1 г на 1 кг синтезируемого купороса. Процесс осуществляется при температуре 80°С в течение двух часов. При этом растворимость магнетита в серной кислоте без хлорного железа составляет 37-38%, а в его присутствии повышается до 50%. [А.С. №1502474 А1, С01С 49/14, 1989]

Недостатком данного способа является:

1. Низкий выход коагулянта - максимум 50%..

2. Применение для процесса дорогого коррозионностойкого оборудования

Наиболее близким по технической сущности является способ получения железосодержащего коагулянта, включающий окисление железа (II) в железо (III) гипохлоритом натрия в качестве окислителя, отличающийся тем, что концентрированные растворы коагулянта получают окислением отработанных травильных растворов, содержащих сульфаты и хлориды железа (II), с последующей обработкой суспензии минеральной кислотой до растворения осадка [пат. РФ №2424195, МПК С22В 3/02, 2010].

Однако и этот способ имеет следующие недостатки:

1. Применение для окисления хлорида железа (11) дефицитного и высоко токсичного гипохлорита натрия.

2. Коагулянт содержит высокое количество хлорида натрия, что осложнит в дальнейшем его удаление из очищаемых стоков или промышленной воды.

3. Растворимость хлорида железа (III) в воде в результате гидролиза составляет 91,9 г/100 г воды или 48%, что требует для выделения кристаллогидрата удаление избыточной воды из сиропов выпариванием.

Технической задачей изобретения является разработка эффективного, улучшающего экологию окружающей среды, способа получения коагулянта -хлорида железа (III) не содержащего примесей из отходов производств при одновременной утилизации побочных продуктов и низких энергозатратах.

Поставленная задача решается применением для получения коагулянта-хлорида железа (III) отработанного сернокислого раствора травления металлов, содержащего, масс. %: H2SO4-5…6; FeSO4 -18…20; Н2 О- 76…77 с добавкой серной кислоты, окислением сульфат железа кислородом воздуха, нейтрализацией раствора отходом хлорида кальция, содержащего, масс. %: CaCl2 -30…40 и FeCl2-15…20, отделения гипса, сушка коагулянта.

Технический результат достигают за счет того, что способ получения железосодержащего коагулянта, включающий окисление железа (II) в железо (III) путем окисления отработанных травильных растворов, содержащих сульфаты и хлориды железа (II), согласно изобретения отличается тем, что в реактор, оборудованный мешалкой и распылителем воздуха, подают отработанный сернокислый раствор травления металла, серную кислоту и отход хлорида кальция, в реакторе полученную суспензию сначала окисляют воздухом, который подают в количестве (1,5…2,0) г/(л⋅ч) при температуре t=(20…30)°C до рН=(3,0…3,5), затем смесь нейтрализуют отходным хлоридом кальция при температуре t=(70…75)°C, до рН=(7,0…7,5), при этом образуется хлорид железа (III) и сульфат кальция, полученную суспензию направляют на фильтр-пресс, где отделяют осадок, его охлаждают до температуры t=(40…50)°С, получают гипс, который подают в сушилку «кипящего слоя», где его подвергают сушке при температуре t=(150…180)°C и одновременно измельчению до (4…6)мм, при этом получают гипс высокого качества, а отделенный фильтрат подвергают вакуум кристаллизации при температуре t=(80…90)°C, полученные кристаллы отделяют на центрифуге, подают в сушилку «кипящего слоя» где сушат при температуре t=(100…110)°С, одновременно измельчают до (10-15) мкм, получают активный железосодержащий коагулянт - кристаллический хлорид железа (III), а оставшийся фильтрат возвращают в реактор.

Указанные отходы (OTP и отход хлорида кальция) в больших объемах образуются на предприятиях металлургической и химической промышленности при травлении металлов кислотами и их нейтрализации известью или магнезитом, но не находят широкого промышленного применения. В тоже время растворы травления металлов являются ценным сырьем и пригодны для получения различных материалов, в том числе и железосодержащего коагулянта по приведенной ниже технологии.

Известны способы, при которых хлористое железо получают путем растворения металлического железа, закиси или окиси железа в соляной кислоте. Хлорное железо получают из хлористого железа или из его раствора окислением кислородом воздуха с последующим выпариванием избыточной влаги до концентрации, при которой продукт при остывании затвердевает в кристаллический продукт FeCl3

2О. Однако процесс окисления хлористого железа идет очень медленно, а растворы получаемого хлорида железа, особенно разбавленные при повышении температуры подвергаются гидролизу, что резко снижает их качество [Позин М.Е. Технология минерального сырья. Л.: Химия, 1961, 476 с.].

В больших объемах применяются процессы получения хлорного железа горячем хлорированием железа и его оксидов в присутствии восстановителя. Однако этот процесс не только высоко опасен, но и требует применения специального оборудования. В связи с этим, более рационально получать хлорид железа из других его соединений (оксидов или гидроксидов железа, или сульфатов железа), в том числе и из железного купороса, который образуется в промышленности в больших объемах и не находит широкого применения. [Позин М.Е. Технология минеральных солей - Л.: Госхимиздат, 1964. - С. 481].

Сущность изобретения состоит в том, что в отработанном сернокислом растворе окисляют железо кислородом воздуха до трехвалентного состояния, предварительно повысив в нем содержание сульфат ионов добавкой серной кислоты, после чего суспензию нейтрализуют отходом хлорида кальция (шлама, содержащего 35…40% CaCl2 и 15…20% FeCl3), получаемого на производстве нейтрализацией отработанных солянокислых растворов травления металлов известью, при этом протекают реакции (1 и 2):

Окисление проводят в реакторе антикоррозионного исполнения, оборудованном мешалкой и барботером для распыления воздуха. Процесс ведут при температуре t=(20…30)°С до рН=(3,0…3,5), согласно указанной выше реакции (1), не допуская образования ионов FeOH+(переокисления и изменения цвета раствора), что регулируется скоростью подачи в реактор воздуха, которая составляет (1,5…2,0) г/(л⋅ч), температурой процесса t=(20…30)°C и рН, равном (3,0…3,5).

После окончания реакции суспензию нейтрализуют отходом (шламом хлорида кальция) до изменения рН реакции до (7,0…7,5), при этом повышается температура до t=(70…75)°С и протекает приведенная ниже реакция (3):

Затем при охлаждении раствора до температуры t=(40…50)°С в нем образуется по реакции (4) осадок - гипс:

Однако такой гипс обладает низкой вяжущей способностью и поэтому он не пригоден для изготовления ответственных изделия (низкая прочность, высокая водопроницаемость). В промышленных условиях для получения строительных материалов повышенной прочности и низкой водопроницаемости применяют специально изготовленный строительный гипс, который получают термической обработкой природного гипса в запарочных аппаратах (паровых котлах) при температуре t=(140…190)°С и давлении 1,3 атм. в течение (1.0…1,5) часа [Краткая химическая энциклопедия. -М.: «Советская энциклопедия», 1964, Т1, С. 715].

Получаемые с использованием такого гипса изделия имеют прочность при сжатии через 1,5 часа от 40 до 50 МПа, а более длительная его обработка при высокой температуре приводит к частичному разложению гипса образованием оксида кальция, обладающего свойством катализатора, еще больше повышает прочность изделий, получаемых на основе такого гипса.

В связи с этим, сушку после отделения на фильтр-прессе от суспензии осадка проводят при температуре t=(150…180°С) и одновременно его измельчают до (4…6)мм в комбинированной сушилке «кипящего слоя» получая гипс, пригодный для изготовления строительных материалов высокого качества.

Если температура сушки будет меньше, чем 150°С, то изделия из гипса не обладают достаточной прочностью, если же температура сушки будет больше, чем 180°С, то на прочность это влияния не оказывает, но будет высокий расход энергии.

Измельчение частиц меньше 4 мм не влияет на качество получаемого гипса, но сильно увеличивает расход энергии, а при крупности частиц больше 6 мм - уменьшается прочность гипса.

Отделенный фильтрат, содержащий хлорид железа, подвергают вакуум-кристаллизации при температуре t=(80…90)°С до образования кристаллов по реакции (5), которые отделяют на центрифуге и далее подвергают их одновременно сушке и измельчению в комбинированной сушилке «кипящего слоя» при температуре t=(100…110)°С, получая по реакции (5) кристаллический хлорид железа- коагулянт с размером кристаллов 10…15 мкм:

Если температура сушки будет больше, чем 110°С то сильно повышается расход энергии, если же температура сушки будет меньше, чем 100°С, то качество коагулянта снижается.

При крупности частиц больше 10 мкм снижается качество коагулянта, а при крупности частиц меньше 15 мкм будет сильно увеличиваться расход энергии без изменения качества.

Далее приведены примеры получения, согласно способу-прототипу и предлагаемому способу в лабораторных условиях, железосодержащего коагулянта из отработанных травильных растворов (OTP) и дано сравнение показателей с прототипом.

Пример 1. (прототип). К 1 литру сернокислого OTP, содержащего, г/л: сульфат железа (II) - 205,0, серной кислоты - 37,2 добавляют эквивалентное количество концентрата гипохлорита натрия (124,0 мл), необходимое для полного окисления Fe2+ в Fe3+, содержащего, г/л: гипохлорит натрия - 50,2 и гидроксида натрия - 1,4, и перемешивают. Смесь превращается в темно-бурую суспензию, которую обрабатывают минимальным объемом минеральной кислоты до растворения осадка. Конверсия Fe2+→Fe3+ составляет 98,9%. Однако коагулянт содержит высокое количество хлорида натрия, что осложнить в дальнейшем его удаление из очищаемых стоков и ли промышленной воды.

Пример №2. 1 литр сернокислого OTP, содержащего, г/л: серной кислоты, сульфат железа (II)-39,0, серной кислоты-9,4, помещают в емкость с мешалкой и распылителем воздуха и приборами учета воздуха и контроля рН раствора. После подогрева раствора до температуры 50°С в раствор подают воздух, поддерживая рН раствора на уровне 3,0…3,5. Окисление ведут до изменения цвета раствора, после чего в раствор добавили 29,8 г хлорида кальция, при этом температура повысилась до 70°С. После окончания реакции раствор охладили до 40°С, при этом в нем выпал осадок, который отфильтровали и высушили в муфельной печи при температуре 90°С, а фильтрат выпарили в вакуум-кристаллизаторе при температуре 80°С, отфильтровали осадок и высушили его в муфельной печи при температуре 100°С. В результате опыта получили 66,2 г. коагулянта.

Предлагаемый способ позволяет полностью вовлекать в цикл утилизации железо- и кальций содержащие отходы. При этом предотвращается образование сточных вод и шламов, так как переработанная смесь OTP используется как коагулянт в процессах водоочистки и может заменить применяемый в настоящее время дорогостоящий сульфат алюминия. Таким образом, предлагаемый способ имеет несомненные эколого-экономические преимущества, так как не имеет примеси хлорида натрия, как коагулянт прототипа. Показатели для оценки коагуляционной активности окисленных травильных растворов приводятся ниже в табл. 1) основные показатели различных видов коагулянтов.

Данные табл. 1 показывают, что железосодержащие коагулянты, полученные путем окисления указанных отходов обладают высоким качеством и рекомендуются для очистки сточных вод в процессах водоочистки взамен сульфата алюминия.

На фиг. представлена технологическая схема получения железосодержащего коагулянта на опытной установке из отходов производств, на которой 1 - емкость отработанного раствора; 2 - емкость серной кислоты; 3 - бункер хлорида кальция; 4 - реактор, оборудованный паровой рубашкой и распылителем воздуха; 5, 5а и 5б - промежуточные емкости; 6 - насос; 7 - фильтр, 8 - комбинированные сушилки «кипящего слоя» с конденсатором паров (8а - для сушки гипса, 8б - для сушки коагулянта); 9 - вакуум-кристаллизатор, оборудованный подогревателем и конденсатором (для выпарки раствора коагулянта; 10 - центрифуга, 11 - бункера готовой продукции (11а - для гипса, 11б - для коагулянта).

Способ согласно схеме (фиг.) осуществляют следующим образом.

Отработанный травильный раствор из емкости 1 подают в реактор 4 совместно с серной кислотой, подаваемой из емкости 2, и затем подают отход хлорида кальция из бункера 3, продувая суспензию воздухом, после окончания реакции (1-3) суспензию через промежуточную емкость 5 насосом 6 подают в фильтр 7, на котором отделяют осадок, и направляют его в комбинированную сушилку «кипящего слоя» 8а, там производят сушку осадка при температуре t=(150…180°C) и одновременно измельчение частиц до (4…6) мм, затем готовый гипс подают в бункер 11а. Фильтрат, содержащий хлорид железа, после фильтра 7 через промежуточную емкость 5а подают а вакуум-кристаллизатор 9, где подвергают вакуум-кристаллизации при температуре t=(80…90)°C до образования кристаллов по реакции (5), которые отделяют на центрифуге 10 и далее подвергают их одновременно сушке и измельчению в комбинированной сушилке «кипящего слоя» 86 при температуре t=(100…110)°С, получая по реакции (5) кристаллический хлорид железа - коагулянт с размером кристаллов 10…15 мкм. Готовый коагулянт передают в бункер 11б, а фильтрат после центрифуги собирают в емкости 5б и - возвращают в оборот.

Способ получения железосодержащего коагулянта, включающий окисление железа (II) в железо (III) путем окисления отработанных травильных растворов, содержащих сульфаты и хлориды железа (II), отличающийся тем, что в реактор, оборудованный мешалкой и распылителем воздуха, подают отработанный сернокислый раствор травления металла, серную кислоту и отход хлорида кальция, в реакторе полученную суспензию сначала окисляют воздухом, который подают в количестве 1,5-2,0 г/(л⋅ч) при температуре t=20-30°C до рН=3,0-3,5, затем смесь нейтрализуют отходным хлоридом кальция при температуре t=70-75°С до рН=7,0-7,5, при этом образуется хлорид железа (III) и сульфат кальция, полученную суспензию направляют на фильтр-пресс, где отделяют осадок, его охлаждают до температуры t=40-50°С, получают гипс, который подают в сушилку «кипящего слоя», где его подвергают сушке при температуре t=150-180°C и одновременно измельчению до 4-6 мм, при этом получают гипс высокого качества, а отделенный фильтрат подвергают вакуумной кристаллизации при температуре t=80-90°C, полученные кристаллы отделяют на центрифуге, подают в сушилку «кипящего слоя», где сушат при температуре t=100-110°C, одновременно измельчают до 10-15 мкм, получают активный железосодержащий коагулянт - кристаллический хлорид железа (III), а оставшийся фильтрат возвращают в реактор.
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩЕГО КОАГУЛЯНТА ИЗ ОТХОДОВ ПРОИЗВОДСТВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 17.
25.08.2017
№217.015.ccb3

Способ переработки отходов, содержащих тяжелые цветные металлы

Изобретение относится к переработке пылеотходов, полученных при прокаливании отходов бронзы, содержащих тяжелые цветные металлы. Способ заключается в растворении в 20-25% растворе серной кислоты пыли, уловленной при прокаливании отходов бронзы. В полученный сернокислый раствор добавляют...
Тип: Изобретение
Номер охранного документа: 0002620538
Дата охранного документа: 26.05.2017
21.03.2019
№219.016.ead6

Способ получения жидкого стекла

Изобретение относится к получению жидкого стекла. Способ получения жидкого стекла включает составление смеси, состоящей из 80 мас. % отхода производства ферросиликохрома, представляющего собой микрокремнезем с размером частиц (10-100)⋅10 м, содержащий, мас. %: SiO - 83-93, AlO - 0,8-1,5, СаО -...
Тип: Изобретение
Номер охранного документа: 0002682635
Дата охранного документа: 19.03.2019
04.06.2019
№219.017.7339

Способ переработки шламов кислых шахтных вод

Изобретение относится к области гидрометаллургии тяжелых цветных металлов и может быть использовано при комплексной переработке шламов нейтрализации кислых шахтных вод и переработки шламов сточных вод гальванических и аналогичных производств. Шламы кислых шахтных вод одновременно измельчают до...
Тип: Изобретение
Номер охранного документа: 0002690330
Дата охранного документа: 31.05.2019
04.06.2019
№219.017.7358

Способ переработки отработанных кислых растворов гальванических производств

Изобретение относится к обезвреживанию отходов гальванических производств, содержащих тяжелые металлы, отхода горнодобывающих предприятий доломитовой пыли. Способ включает обработку раствора отходом производства до достижения установленных значений рН для каждого металла в полученной смеси,...
Тип: Изобретение
Номер охранного документа: 0002690328
Дата охранного документа: 31.05.2019
07.06.2019
№219.017.7505

Способ получения кристаллогидратов хлоридов магния и кальция из отходов производств

Изобретение относится к области химической технологии. Способ получения кристаллогидратов хлоридов магния и кальция из отходов производств, включает нейтрализацию раствора соляной кислоты карбонатами. В качестве соляной кислоты используют отработанные солянокислые растворы травления металлов. В...
Тип: Изобретение
Номер охранного документа: 0002690820
Дата охранного документа: 05.06.2019
26.06.2019
№219.017.9208

Способ очистки отходящих газов от оксидов серы с получением товарных продуктов

Изобретение относится к способам очистки отходящих газов (пиролизного газа, дымовых газов от сжигания его или других углеводородов) от оксидов серы в теплоэнергетике, в металлургии и в других отраслях народного хозяйства с аналогичным составом отходящих газов. Способ очистки отходящих газов от...
Тип: Изобретение
Номер охранного документа: 0002692382
Дата охранного документа: 24.06.2019
13.07.2019
№219.017.b359

Способ очистки отходящих газов от хлора и хлористого водорода с получением товарных продуктов

Изобретение относится к технологии очистки отходящих газов в химической, металлургической, строительной отраслях промышленности. Способ включает очистку газов от хлора суспензией и дальнейшую переработку отработанной суспензии в товарный продукт. При очистке пиролизных и дымовых газов от хлора...
Тип: Изобретение
Номер охранного документа: 0002694351
Дата охранного документа: 11.07.2019
17.07.2019
№219.017.b56b

Способ получения расширяющейся цементной смеси

Изобретение относится к промышленности, производящей расширяющиеся цементы, применяемые, например, для крепления анкеров в горных выработках, в строительстве подземных сооружений, при гидроизоляции и в других целях. Технический результат настоящего изобретения - снижение себестоимости...
Тип: Изобретение
Номер охранного документа: 0002694653
Дата охранного документа: 16.07.2019
17.10.2019
№219.017.d723

Способ изготовления жаростойкой бетонной смеси и способ изготовления изделий из жаростойкой бетонной смеси

Изобретение относится к способам производства бетонной смеси и жаростойких бетонных изделий, пригодных для изготовления футеровки промышленных тепловых и огнеупорных агрегатов, в частности для футеровки вагонеток обжига кирпича и других агрегатов. Технической задачей предлагаемого изобретения...
Тип: Изобретение
Номер охранного документа: 0002703036
Дата охранного документа: 15.10.2019
22.10.2019
№219.017.d8a7

Способ получения гипсового вяжущего из гипсосодержащего шлама

Изобретение относится к области производства высокого качества гипсового вяжущего из гипсосодержащих шламов, получаемых при нейтрализации сточных вод машиностроительных и аналогичных предприятий, пригодных для получения различного состава строительных материалов и изделий на его основе. Описан...
Тип: Изобретение
Номер охранного документа: 0002703644
Дата охранного документа: 21.10.2019
Показаны записи 1-10 из 19.
25.08.2017
№217.015.ccb3

Способ переработки отходов, содержащих тяжелые цветные металлы

Изобретение относится к переработке пылеотходов, полученных при прокаливании отходов бронзы, содержащих тяжелые цветные металлы. Способ заключается в растворении в 20-25% растворе серной кислоты пыли, уловленной при прокаливании отходов бронзы. В полученный сернокислый раствор добавляют...
Тип: Изобретение
Номер охранного документа: 0002620538
Дата охранного документа: 26.05.2017
20.01.2018
№218.016.1188

Способ получения сульфата магния и железоокисных пигментов из отходов производств

Изобретение может быть использовано в химической промышленности. Для получения сульфата магния и железооксидных пигментов из отходов производств осуществляют взаимодействие тонкодисперсного магнийсодержащего сырья с сернокислым отработанным травильным раствором, содержащим сульфат железа. В...
Тип: Изобретение
Номер охранного документа: 0002634017
Дата охранного документа: 23.10.2017
15.12.2018
№218.016.a7f9

Способ получения алюмосиликатного клея-связки

Изобретение относится к алюмосиликатной клеевой промышленности. Для получения клея-связки приводят в контакт раствор натриевой щелочи с кремнийсодержащими отходами производства при 150-160°C в течение 1,5-2 ч, производят механохимическую обработку и отделение осадка от клея-связки. Полученную...
Тип: Изобретение
Номер охранного документа: 0002674801
Дата охранного документа: 14.12.2018
21.03.2019
№219.016.ead6

Способ получения жидкого стекла

Изобретение относится к получению жидкого стекла. Способ получения жидкого стекла включает составление смеси, состоящей из 80 мас. % отхода производства ферросиликохрома, представляющего собой микрокремнезем с размером частиц (10-100)⋅10 м, содержащий, мас. %: SiO - 83-93, AlO - 0,8-1,5, СаО -...
Тип: Изобретение
Номер охранного документа: 0002682635
Дата охранного документа: 19.03.2019
04.06.2019
№219.017.7339

Способ переработки шламов кислых шахтных вод

Изобретение относится к области гидрометаллургии тяжелых цветных металлов и может быть использовано при комплексной переработке шламов нейтрализации кислых шахтных вод и переработки шламов сточных вод гальванических и аналогичных производств. Шламы кислых шахтных вод одновременно измельчают до...
Тип: Изобретение
Номер охранного документа: 0002690330
Дата охранного документа: 31.05.2019
04.06.2019
№219.017.7358

Способ переработки отработанных кислых растворов гальванических производств

Изобретение относится к обезвреживанию отходов гальванических производств, содержащих тяжелые металлы, отхода горнодобывающих предприятий доломитовой пыли. Способ включает обработку раствора отходом производства до достижения установленных значений рН для каждого металла в полученной смеси,...
Тип: Изобретение
Номер охранного документа: 0002690328
Дата охранного документа: 31.05.2019
07.06.2019
№219.017.7505

Способ получения кристаллогидратов хлоридов магния и кальция из отходов производств

Изобретение относится к области химической технологии. Способ получения кристаллогидратов хлоридов магния и кальция из отходов производств, включает нейтрализацию раствора соляной кислоты карбонатами. В качестве соляной кислоты используют отработанные солянокислые растворы травления металлов. В...
Тип: Изобретение
Номер охранного документа: 0002690820
Дата охранного документа: 05.06.2019
26.06.2019
№219.017.9208

Способ очистки отходящих газов от оксидов серы с получением товарных продуктов

Изобретение относится к способам очистки отходящих газов (пиролизного газа, дымовых газов от сжигания его или других углеводородов) от оксидов серы в теплоэнергетике, в металлургии и в других отраслях народного хозяйства с аналогичным составом отходящих газов. Способ очистки отходящих газов от...
Тип: Изобретение
Номер охранного документа: 0002692382
Дата охранного документа: 24.06.2019
13.07.2019
№219.017.b359

Способ очистки отходящих газов от хлора и хлористого водорода с получением товарных продуктов

Изобретение относится к технологии очистки отходящих газов в химической, металлургической, строительной отраслях промышленности. Способ включает очистку газов от хлора суспензией и дальнейшую переработку отработанной суспензии в товарный продукт. При очистке пиролизных и дымовых газов от хлора...
Тип: Изобретение
Номер охранного документа: 0002694351
Дата охранного документа: 11.07.2019
17.07.2019
№219.017.b56b

Способ получения расширяющейся цементной смеси

Изобретение относится к промышленности, производящей расширяющиеся цементы, применяемые, например, для крепления анкеров в горных выработках, в строительстве подземных сооружений, при гидроизоляции и в других целях. Технический результат настоящего изобретения - снижение себестоимости...
Тип: Изобретение
Номер охранного документа: 0002694653
Дата охранного документа: 16.07.2019
+ добавить свой РИД