×
12.10.2019
219.017.d517

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ РАСТВОРА МНОГОКОМПОНЕНТНОЙ ПРОБЫ ТВЕРДОГО ОБРАЗЦА БОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитической химии, а именно к методам пробоподготовки. Анализ химического состава пробы, содержащей аморфную и кристаллические фазы бора и композиции бора с органическими веществами, включает взятие навески, смешивание со смесью водных растворов минеральных кислот - азотной, плавиковой и серной в качестве активной жидкости, и разделение на функциональные составные части. Смешение осуществляют в несколько стадий при комплексном воздействии температур не более 220°C и давлений не более 80 бар в сочетании с воздействием микроволнового излучения с рабочей частотой волнового воздействия магнетрона не более 2450 МГц и мощностью микроволн не более 1450 Вт. Количество стадий пропорционально степени кристалличности бора, размеру частиц образца. На каждой очередной стадии обработку твердого образца бора ведут, чередуя смешение попеременно или со смесью указанных минеральных кислот, или с концентрированной азотной кислотой до полного растворения пробы. Обеспечивается возможность полного растворения образцов бора, содержащих, и кристаллическую, и аморфные фазы, и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях. 1 табл.

Предлагаемое изобретение относится к области аналитической химии, а именно к методам пробоподготовки растворов проб твердого образца бора, содержащего и кристаллическую и аморфные фазы, и композиции бора с органическими веществами, для последующего анализа химического состава исследуемого вещества.

Актуальность решаемой проблемы основана на следующем. При определении химического состава бора используют различные методы аналитической химии, такие как спектрометрия, атомно-абсорбционной спектрометрии, атомно-эмиссионной спектрометрии, где требуется переведение твердых проб бора в раствор. Однако, растворение многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях, представляет собой достаточно труднорешаемую проблему и диктует выбор особых методов и веществ для ее решения. В отличие от бора аморфного бор, растворение которого не представляет особых трудностей, кристаллический бор стоек к воздействию минеральных кислот, а окислители (перекись водорода, перманганат калия и т.п.) окисляют его медленно.

Известен способ получения растворимого нитрида бора (патент РФ №2478077, МПК B82B 3/00, публ. 27.03.2013 г.), согласно которому подвергают смешению нитрид бора с функциональным реагентом, в качестве которого используют гидразин или смесь азотной и серной кислот.

Однако, в известном способе не предусмотрена возможность растворения многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях, и является длительным и трудоемким.

Известен в качестве прототипа заявленному способ подготовки проб для определения содержания бора в исследуемом материале (патент РФ №2292036, МПК G01N 21/00, публ. 20.01.2007 г.), по которому исследуемый материал смешивают с активной добавкой, в качестве которой используют мочевину.

К недостаткам прототипа относится отсутствие возможности использовать его для растворения многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях.

Задачей авторов изобретения явялется разработка эффективного способа растворения многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной растворимостью в традиционных растворителях.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в обеспечении возможности полного растворения многосложных исходных образцов бора, содержащих и кристаллическую и аморфные фазы и композиции бора с органическими веществами, обладающих различной способностью растворятся в традиционных растворителях.

Указанные задача и новый технический результат обеспечивается тем, что в отличие от известного способа приготовления раствора многокомпонентной пробы твердого образца бора, содержащего аморфную и кристаллическую фазы, и композиции бора с органическими веществами, для проведения анализа химического состава пробы, включающем взятие навески, смешивание с активной минеральной жидкостью и разделение на функциональные составные части, согласно изобретению, разделение на функциональные составные части исследуемого материала ведут путем смешения многокомпонентной пробы твердого образца бора со смесью водных растворов минеральных кислот - азотной, плавиковой и серной в качестве активной жидкости, смешение осуществляют при комплексном воздействии температур не более 220°C и давлений не более 80 бар в сочетании с воздействием микроволнового излучения с рабочей частотой волнового воздействия магнетрона не более 2450 МГц и мощностью микроволн не более 1450 Вт, комплексное воздействие для разделения многокомпонентной пробы образца бора осуществляют в несколько стадий, в количестве, пропорциональном степени кристалличности бора, размеру частиц образца, смешение производят в герметичном сосуде, при этом на каждой очередной стадии обработку твердого образца бора ведут, чередуя смешение попеременно или со смесью указанных минеральных кислот или с концентрированной азотной кислотой, до полного растворения многокомпонентной пробы твердого образца бора.

Предлагаемый способ поясняется следующим образом.

Первоначально берут навеску многокомпонентные пробы твердого образца бора и производят смешивание с активной минеральной жидкостью и разделение на функциональные составные части. В качестве активной минеральной жидкости используют смесь водных растворов минеральных кислот - концентрированной азотной, плавиковой и серной. Экспериментально показано, что использование только разложения исследуемого твердого образцов бора, содержащего аморфную и кристаллическую фазы, и композиции бора с органическими веществами, в концентрированных азотной, фтористоводородной и серной кислотах не позволяет полностью разложить их. Особенности свойств указанных выше многосложных анализируемых проб бора диктуют необходимость сочетания разлождения химическими реагентами с воздействием физических факторов, например, высоких давлений и микроволнового излучения. Экспериментально были подобраны условия таких воздействий, которые при совместном использовании с разложением проб бора химическими реагентами дают наиболее высокий эффект переведения твердых многосложных проб бора в раствор.

В предлагаемом способе разделение на функциональные составные части исследуемого материала ведут путем смешения многокомпонентной пробы твердого образца бора со смесью водных растворов минеральных кислот - концентрированной азотной, плавиковой и серной в качестве активной жидкости, смешение осуществляют при комплексном воздействии температур не более 220°C и давлений не более 80 бар в сочетании с воздействием микроволнового излучения с рабочей частотой волнового воздействия магнетрона не более 2,45 ГГц и мощностью микроволн не более 1450 Вт. Комплексное воздействие для разделения многокомпонентной пробы образца бора осуществляют в несколько стадий, в количестве, пропорциональном степени кристалличности бора, размеру частиц образца, смешение производят в герметичном сосуде, при этом на каждой очередной стадии обработки твердого образца бора ведут, чередуя смешение попеременно или со смесью указанных минеральных кислот или с концентрированной азотной кислотой. При этом при физическом воздействии микроволн, температуры и избыточного давления в сосудах создаются условия для более интенсивного образования паров N2O4, которые остаются в реакционной смеси, воздействуя на исследуемый образец бора, за счет чего происходит химическое растворение бора, содержащего аморфную и кристаллическую фазы. Под воздействием смеси кислот, температуры, давления и микроволнового излучения органическая составляющая исследуемых образцов разлагается до оксида углерода, который выходит в виде газа при вскрытии реакционных сосудов, кремнийорганическая составляющая - до оксидов кремния, которые затем химически растворяются в концентрированной плавиковой кислоте.

Парметры процессов эффективного физического воздействия на процесс разложения многосоставной пробы твердого бора (таблица 1) были выявлены при экспериментальной отработке способа. Всякое превышение границ заявленных пределов температуры и давления не приведет к полному разложению многокомпонентной пробы твердого бора.

Проведение комплексного воздействия для разделения многокомпонентной пробы образца бора в количестве стадий, которые должны быть пропорциональными или степени кристалличности бора, или размеру частиц образца бора, также экспериментально обосновано. Так, показано, что если размер частиц бора более 0,1 мм, двух стадий может оказаться недостаточно для полного растворения. В этом случае повторяют вторую стадию разложения необходимое для этого количество раз до полного растворения исследуемой пробы бора.

Всю совокупность операций разложения твердых многосоставных проб бора в сочетании с воздействием микроволнового излучения и воздействием температур не более 220°C и давлений не более 80 бар проводят до полного растворения многокомпонентной пробы твердого образца бора. Полноту растворения проб бора определяют визуально или при использовании оптических методов определения прозрачности результирующих растворов исследуемых проб.

Таким образом, как это показали экспериментальные исследования, при использовании предлагаемого способа приготовления раствора многокомпонентной пробы твердого образца бора, обеспечиваются возможности полного растворения многосложных исходных образцов бора, содержащих и кристаллическую, и аморфную фазы, обладающих различной способностью растворяться в традиционных растворителях.

Возможность промышленной реализации предлагаемого способа может быть подтверждена следующими примера конкретного исполнения.

Пример 1. В лабораторных условиях предлагаемый способ был опробован на растворении бора кристаллического по ТУ 6-08-296-74, фракция с размером частиц менее 0,3 мм. Для чего взяли навеску пробы массой 50 мг и поместили в тефлоновый сосуд для разложения типа DAK-100. В сосуд с пробой добавили концентрированные кислоты - 1,5 см3 HNO3 и 4 см3 H2S04. Растворение проводили в системе микроволнового разложения типа «Speedwave four» производства BERGHOF Products + Instruments GmbH (Германия) при параметрах, указанных в таблице 1. После вскрытия сосуда для разложения визуально установили, что в полученном растворе имеются неразложившиеся частицы пробы бора. В сосуд с пробой добавили 1,5 см3 концентрированной HNO3 и провели вторую стадию разложения при параметрах, указанных в таблице 1. После вскытия сосуда установлено, что получен прозрачный раствор.

Пример 2. При растворении бора кристаллического по ТУ 6-08-296-74. фракции с размером частиц менее 0,3 мм взяли навеску пробы массой 50 мг и поместили в тефлоновый сосуд для разложения типа DAK-100. Провели две стадии разложения в концентрированных кислотах HNO3 и H2S04 при условиях, приведенных в примере 1. После вскрытия сосуда установлено наличие иерастворившегося осадка бора. В сосуд с пробой добавили 1,5 см3 концентрированной HNO3 и провели третью стадию разложения при параметрах, указанных в таблице 1. После вскытия сосуда установлено, что получен прозрачный раствор.

Пример 3. При растворении смеси бора кристаллического по ТУ 6-08-296-74, фракции с размером частиц менее 0,1 мм и кремиийорганической смазки ВНИИ НП-293 но ТУ 38.101604-00 взяли навеску пробы массой 100 мг и поместили в тефлоновый сосуд для разложения типа DAK-100. Провели две стадии разложения в концентрированных кислотах HNO3 и H2S04 при условиях, приведенных в примере 1. После вскрытия сосудов установлено наличие осадка оксида кремния. В сосуд с пробой добавили 1,0 см3 концентрированной HF и провели третью стадию разложения при параметрах, указанных в таблице 1. После вскытия сосудов установлено, что получен прозрачный раствор. В данных условиях достигается полное растворение композиций на основе бора и полиэтилена, полипропилена, полиметилсилоксана и других органических материалов.

Как это показали приведенные примеры растворения многосложных исходных образцов бора, содержащих и кристаллическую, и аморфные фазы, и композиции бора с органическими веществами, обладающий различной способностью растворяться в традиционных растворителях, было достигнуто их полное переведение в раствор.

Способ приготовления раствора многокомпонентной пробы твердого образца бора, содержащего аморфную и кристаллическую фазы, и композиции бора с органическими веществами, для проведения анализа химического состава пробы, включающий взятие навески, смешивание с активной минеральной жидкостью и разделение на функциональные составные части, отличающийся тем, что разделение на функциональные составные части исследуемого материала ведут путем смешения многокомпонентной пробы твердого образца бора со смесью водных растворов минеральных кислот - азотной, плавиковой и серной в качестве активной жидкости, смешение осуществляют при комплексном воздействии температур не более 220°С и давлений не более 80 бар в сочетании с воздействием микроволнового излучения с рабочей частотой волнового воздействия магнетрона не более 2450 МГц и мощностью микроволн не более 1450 Вт, комплексное воздействие для разделения многокомпонентной пробы образца бора осуществляют в несколько стадий в количестве, пропорциональном степени кристалличности бора, размеру частиц образца, смешение производят в герметичном сосуде, при этом на каждой очередной стадии обработки твердого образца бора ведут, чередуя смешение попеременно или со смесью указанных минеральных кислот, или с концентрированной азотной кислотой до полного растворения многокомпонентной пробы твердого образца бора.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 796.
10.05.2015
№216.013.4b26

Тепловыделяющий элемент энергетического ядерного реактора и способ его изготовления

Изобретение относится к ядерной энергетике, в частности к конструкциям газозаполненных твэлов для экспериментальных, испытательных и исследовательских реакторов и способам их изготовления. Твэл содержит оболочку, заполненную газом заданного состава и давления, с размещенным в ней топливным...
Тип: Изобретение
Номер охранного документа: 0002550745
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4dab

Устройство защиты

Изобретение относится к области экранирования и может быть использовано в конструкциях, подвергаемых импульсным нагружениям высокой интенсивности. Устройство содержит взрывозащитный экран, разрушаемый под действием внешней импульсной нагрузки, основание, жестко закрепленное при помощи стоек на...
Тип: Изобретение
Номер охранного документа: 0002551397
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.515c

Контактная система

Изобретение предназначено для использования в электромеханических малогабаритных приборах. Контактная система содержит поворотный перемыкатель с токопроводящими секторами, взаимодействующими с упругими контактами, которые попарно консольно закреплены на токовыводах, расположенных по окружности...
Тип: Изобретение
Номер охранного документа: 0002552349
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5205

Способ генерации широкополосного электромагнитного излучения свч диапазона

Способ генерации широкополосного электромагнитного излучения СВЧ диапазона может быть использован в радиотехнической и электронной промышленности, в частности в технике генерации мощных широкополосных электромагнитных импульсов (ЭМИ) в сантиметровом, миллиметровом и субмиллиметровом диапазонах....
Тип: Изобретение
Номер охранного документа: 0002552518
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.520b

Электромагнитный поляризованный переключатель

Изобретение предназначено для систем автоматики взрывоопасных объектов, подвергаемых ударным и вибрационным внешним воздействиям. Техническим результатом, достигаемым при использовании изобретения, является увеличение стойкости к ударным и вибрационным воздействиям, увеличение количества...
Тип: Изобретение
Номер охранного документа: 0002552524
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5336

Способ сварки деталей разной толщины из разнородных металлов

Способ сварки деталей 1 и 2 разной толщины из разнородных металлов может быть использован в авиастроении, приборостроении, в атомной энергетике. Формируют технологические бурты 3 и 4 на толстостенной 2 и тонкостенной 1 деталях. Высота бурта 3 в 3-4 раза больше толщины детали 1. Высота бурта 4...
Тип: Изобретение
Номер охранного документа: 0002552823
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5337

Способ совмещения электронного луча со стыком кругового соединения (варианты)

Изобретение относится к электронно-лучевой сварке круговых стыков и может быть использовано в различных областях машиностроения и приборостроения. Способ включает совмещение электронного луча со стыком кругового соединения. Определяют взаимное расположение луча и стыка кругового соединения по...
Тип: Изобретение
Номер охранного документа: 0002552824
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.541a

Защитное устройство

Изобретение относится к области безопасной эксплуатации опасных изделий, находящихся в окружении агрессивной среды, в частности к предохранительным герметизирующим устройствам, а именно к устройствам с разрушаемым элементом, обеспечивающим автоматическое срабатывание и открытие герметичных...
Тип: Изобретение
Номер охранного документа: 0002553051
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.56a5

Локализующее продукты взрыва устройство

Изобретение относится к машиностроению и может быть использовано для защиты помещения от загрязнения токсичными продуктами при срабатывании взрывного устройства во взрывозащитной камере (ВЗК) в случае потери ее герметичности от воздействий взрыва. Локализующее продукты взрыва устройство...
Тип: Изобретение
Номер охранного документа: 0002553711
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5767

Способ выращивания монокристаллических дисков из тугоплавких металлов и устройство для его осуществления

Изобретение относится к металлургии высокочистых металлов и может быть использовано при выращивании монокристаллических дисков из тугоплавких металлов и сплавов на их основе методом бестигельной зонной плавки (БЗП) с электронно-лучевым нагревом. Способ включает формирование расплавленной зоны...
Тип: Изобретение
Номер охранного документа: 0002553905
Дата охранного документа: 20.06.2015
Показаны записи 1-5 из 5.
27.09.2014
№216.012.f84a

Способ изготовления металло-тритиевой мишени

Изобретение относится к технологии изготовления металло-тритиевых мишеней, в частности к способу изготовления титан-тритиевых мишеней, которые могут быть использованы для получения моноэнергетических потоков нейтронов. Заявляемый способ заключается в напылении слоя гидридобразующего металла на...
Тип: Изобретение
Номер охранного документа: 0002529399
Дата охранного документа: 27.09.2014
27.08.2015
№216.013.74e4

Способ изготовления титан-тритиевой мишени

Изобретение относится к способу изготовления титан-тритиевых мишеней, применяемых в вакуумной нейтронной трубке. В заявленном способе предусмотрена активация слоя гидридообразующего металла (титана), нанесенного на подложку, в камере насыщения путем нагрева до 300-500°С и подача трития в камеру...
Тип: Изобретение
Номер охранного документа: 0002561499
Дата охранного документа: 27.08.2015
26.08.2017
№217.015.ec5a

Способ кондиционирования воды, содержащей тритий

Изобретение относится к области охраны окружающей среды от радиоактивного загрязнения и может быть использовано для снижения класса опасности жидких радиоактивных отходов (ЖРО), в том числе высокоактивных отходов (ВАО). Способ кондиционирования воды, содержащей тритий, заключается в соединении...
Тип: Изобретение
Номер охранного документа: 0002627690
Дата охранного документа: 10.08.2017
29.05.2019
№219.017.673c

Способ очистки гелия от примеси изотопов водорода

Изобретение относится к технологии очистки инертных газов от газообразных примесей. Исходную газообразную смесь подают в сорбционный блок с пористым нанодисперсным углеродом для поглощения изотопов водорода под воздействием температуры. Одновременно с этим гелий отводят из сорбционного блока....
Тип: Изобретение
Номер охранного документа: 0002323157
Дата охранного документа: 27.04.2008
09.06.2019
№219.017.7c55

Способ получения полуфабриката для изготовления изделий из пенометалла

Изобретение относится к порошковой металлургии, в частности к получению пеноматериалов. Может использоваться в машиностроении, строительстве. В расплав металлического сплава вводят порофор - порошок гидрида редкоземельного металла, имеющего дисперсность от 20 до 300 мкм и степень насыщения,...
Тип: Изобретение
Номер охранного документа: 0002360020
Дата охранного документа: 27.06.2009
+ добавить свой РИД