×
09.10.2019
219.017.d39d

Результат интеллектуальной деятельности: Высокопрочный титановый сплав для корпусных конструкций атомного реактора с водяным теплоносителем

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем. Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным теплоносителем содержит, мас. %: алюминий 4,0-4,5; молибден 1,5-2,5; цирконий 18,0-21,0; хром ≤ 0,003; никель ≤ 0,005, кобальт ≤ 0,0008; железо ≤ 0,014; кремний ≤ 0,006; углерод ≤ 0,006; азот ≤ 0,005; кислород < 0,05; медь ≤ 0,005; титан - остальное. Суммарное содержание алюминия и циркония составляет 22,0-25,0 мас.%, суммарное содержание никеля, хрома, меди, кобальта и железа не превышает 0,02 мас.% и суммарное содержание углерода, кислорода и азота не превышает 0,05 мас.%. Сплав характеризуется высокой прочностью и пластичностью в исходном состоянии и после длительного нейтронного облучения. 3 табл.

Изобретение относится к цветной металлургии, в частности металлургии титановых сплавов, обладающих высокой радиационной стойкостью и предназначенных для использования в атомной энергетике, в частности для изготовления корпусных конструкций реакторов стационарных атомных энергетических установок (АЭУ).

Титановые сплавы, благодаря своим уникальным свойствам: малоактивируемости, немагнитности, низкой плотности, высокой температуре плавления, хорошей коррозионной стойкости в различных средах, сохранению уровня механических свойств при нагреве до температуры 400°С, характерной для режимов эксплуатации водоохлаждаемых энергетических реакторов, предлагаются в настоящее время как конструкционные материалы для оборудования атомной энергетики.

Известен свариваемый высокопрочный сплав на основе титана, предназначенный для изготовления крупногабаритных сварных конструкций, используемых в судостроении и других отраслях промышленности [1] - сплав, содержащий мас. %: алюминий 4,5-6,2; ванадий 1,0-2,0; молибден 1,3-2,0; углерод 0,06-0,14; цирконий 0,05-<0,10; кислород 0,06-0,13; кремний 0,02-<0,10; железо 0,05-0,25; титан остальное, при выполнении следующих соотношений: [С]+[O2]≤0,25; [Mo]+0,5[V]≤3,0. Этот сплав имеет достаточно высокий уровень прочностных свойств на воздухе и в морской воде, но недостатком его являются низкие характеристики пластичности и ударной вязкости в исходном состоянии и после нейтронного облучения, а также довольно высокое содержание примесей Ni, Cu, Со, Cr, С, О, и N, присутствующих в титановом сплаве, которые приводят к охрупчиванию в условиях нейтронного облучения при флюенсе Ф≥1×1019 нейтрон/см2 с энергией тепловых нейтронов Е≥0,5 МэВ, что ограничивает срок службы сплава для корпусных конструкций атомного реактора.

Известен титановый сплав, предназначенный для использования при производстве оборудования и в корпусных конструкциях ядерных энергетических установок [2] - титановый сплав, содержащий в мас. %: алюминий 4,7-6,0; ванадий 1,0-2,0; молибден 0,8-2,0; вольфрам 0,01-0,10; цирконий 0,01-0,10; кремний 0,01-0,10; железо 0,10-0,25; церий 0,005-0,01; углерод 0,05-0,15; кислород 0,01-0,12; азот 0,01-0,04; титан - остальное, при этом суммарное содержание ванадия и молибдена не превышает 3,5%, суммарное содержание циркония и кремния не превышает 0,15%, суммарное содержание кислорода и азота не превышает 0,13%. Основным недостатком этого сплава является существенное упрочнение и значительное снижение вязкости разрушения в условиях нейтронного облучения за счет нестабильности его структурных составляющих. Известно, что при повреждающей дозе нейтронного облучения 0,3 СНА и более в сплавах титана, содержащих высокие концентрации Al и V, формируются наноразмерные кластеры, содержащие атомы алюминия до 8% и атомы ванадия до 22% [3,4], приводящие к снижению остаточной пластичности после облучения ≤ 2% и охрупчиванию сплава. При этом снижается работоспособность и эксплуатационная надежность реакторного оборудования в процессе длительной эксплуатации в составе АЭУ.

В качестве прототипа предложен малоактивируемый титановый сплав с высокой ударной вязкостью, предназначенный для ядерного реактора, содержащий мас. %: алюминий 3,5-5,5; ванадий 2,0-5,0; цирконий 2,0-5,0; хром 0,5-2,0; кремний 0,1-0,5; примеси включают никель не более 0,005; железо не более 0,03; кислород не более 0,15; углерод не более 0,02; медь не более 0,005; кобальт не более 0,0001 и водород не более 0,003 [6]. Для известного сплава отсутствуют сведения о прочностных и пластических свойствах сплава после нейтронного облучения. Не представлены данные по темпу снижения наведенной активности после нейтронного облучения, что делает необоснованным определение сплава как малоактивируемого. Содержание ванадия и хрома в составе сплава существенно ограничивают термическую стабильность, а также характеристики относительного удлинения и ударной вязкости разрушения при длительных сроках нейтронного облучения, из-за потери однородности первоначального твердого раствора α и β фаз, легированных ванадием. В сплаве также отсутствует регламентация содержания примесей, таких как азот, железо, кремний и углерод.

Техническим результатом является создание высокопрочного псевдо-α титанового сплава на основе композиции Ti-Al-Zr-Mo для изготовления корпусных конструкций атомных энергетических реакторов, обеспечивающего необходимый комплекс механических характеристик в исходном состоянии и после длительного нейтронного облучения.

Технический результат достигается за счет того, что высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным теплоносителем содержит алюминий, цирконий, молибден, железо, никель, кремний, хром, медь, кобальт, кислород, азот, углерод при следующем соотношении, мас. %:

Алюминий (Al) 4,0-4,5
Цирконий (Zr) 18,0-21,0
Молибден (Mo) 1,5-2,5
Железо (Fe) ≤0,014
Кремний (Cr) ≤0,006
Углерод (С) ≤0,006
Азот (N) ≤0,005
Кислород (О) ≤0,05
Никель (Ni) ≤0,005
Хром (Cr) ≤0,003
Медь (Cu) ≤0,005
Кобальт (Со) ≤0,0008
Титан (Ti) остальное

При этом суммарное содержание алюминия и циркония находится в пределах %Al+%Zr=22,0÷25,0 суммарное содержание никеля, хрома, меди, кобальта и железа не превышает 0,02 мас. %, суммарное содержание углерода, кислорода и азота не превышает 0,05 мас. %.

Способ получения заявляемого титанового сплава, включает в себя двойной переплав в вакуумной дуговой печи расходуемого электрода с расчетным шихтовым составом, включающим высокочистый губчатый титан, с суммарным содержанием никеля, хрома, меди и кобальта и железа не более 0,02% и твердостью (НВ) не более 85.

Содержание алюминия в заявляемых пределах 4,0-4,5% обеспечивает высокий уровень кратковременной и длительной прочности, теплостойкость при температурах от +20°С до +350°С, обеспечивает стабильность характеристик крупногабаритных полуфабрикатов, в том числе сварных конструкций. Повышение содержания алюминия в сплаве выше 4,5% при облучении приводит к формированию α2-фазы и образованию кластеров в α-твердом растворе, обогащенных алюминием [4,5]. Содержание алюминия ниже 4,0% не обеспечивает требований по уровню прочности сплава.

Содержание циркония в заявляемых пределах 18,0-21,0% в сочетании с алюминием обеспечивает необходимый уровень прочностных характеристик, в том числе повышает прочность и предел ползучести. Цирконий повышает пластичность сплава и, как следствие, технологичность при горячей деформации крупногабаритных поковок. Контролируемый диапазон легирования цирконием определяет структурную стабильность сплава при длительном нейтронном облучении.

Содержание молибдена в заявленных пределах 1,5-2,5% обеспечивает необходимое количество β-фазы в сплаве и гарантирует высокий уровень прочностных характеристик сплава при минимальной потере пластичности при повышенных температурах. Превышение содержания молибдена выше 2,5% приводит к образованию нестабильных фаз α' и α'' и снижению пластичности сварных соединений [7].

Суммарное содержание никеля, хрома, меди, кобальта и железа понижено до 0,02% по сравнению с известным сплавом для обеспечения термической стабильности сплава в условиях длительного температурного и радиационного воздействия, так как эти элементы ограничивают устойчивость твердого раствора α и псевдо-α титановых сплавов за счет образования сегрегаций на границе зерен [8].

Суммарное содержание примесей элементов внедрения углерода, кислорода и азота не превышает 0,05 мас. %, как элементов существенно влияющих на пластичность сплава при температурах от 200°С до 350°С.

Промышленную применимость изобретения подтверждает пример его конкретного выполнения. Для исследования механических характеристик были изготовлены слитки трех составов сплава композиции Ti-Al-Zr-Mo методом двойного вакуумно-дугового переплава с последующим изготовлением опытных поковок габаритом 100×100×250 мм. Для изготовления слитков были использованы следующие шихтовые материалы: губка титановая марки Эк-1; лигатура молибдена; чистый алюминий; чистый электролитический цирконий.

Термическая обработка (отжиг) поковок проводилась по режиму: температура нагрева (800±10)°С →выдержка 2 часа →охлаждение на воздухе.

Химический состав опытных поковок из заявляемого титанового сплава и механические характеристики при температурах испытания 20 и 350°С представлены в таблицах 1 и 2. Механические характеристики определялись при растяжении образцов с рабочей длиной 15 мм и диаметром рабочей части 3 мм в соответствии с ГОСТ 1497-84 и ГОСТ 9651-84. Результаты механических испытаний усреднены по 3-м образцам.

Образцы из опытных сплавов подвергались нейтронному облучению в исследовательском реакторе МИР (ГНЦ НИИ АР, Россия) до флюенса Ф=3×1020 нейтрон/см2 с энергией En≥0,5 МэВ при температуре облучения +270°С в водяном теплоносителе с рН25°C=9÷10,5. Испытания на растяжение проводились на установке Instron 1362 с жесткостью 450 кН/мм со скоростью перемещения активного захвата v=1,0 мм/мин в соответствие с требованиями ГОСТ 28840-90. Результаты испытаний облученных материалов (предел текучести и относительное удлинение) при температурах испытаний 20 и 350°С представлены в таблице 3.

Ожидаемый технико-экономический эффект применения заявляемого титанового сплава определяется радиационной стойкостью при флюенсе Ф=3×1020 н/см2, высоким расчетным темпом снижения наведенной активности с достижением уровня радиационной безопасности после облучении в реакторе типа ВВЭР в течение 40 лет. Высокопрочный титановый сплав предназначен для атомных энергетических установок малой мощности с водяным теплоносителем с расчетным сроком эксплуатации не менее 60 лет.

ЛИТЕРАТУРА

1. Патент RU 2393258 Сплав на основе титана

2. Патент RU 2367697 Титановый сплав для реакторного оборудования атомной и термоядерной энергетики

3. Tahtinen S., Moilanen P., Singh B.N. - Effekt jf displacement dose and irradiation temperature jn tensile and fracture toughness properties of titanium alloys. Journal of Nuclear Materials. 2007, Vol. 360-370, Part A, c. 627-632

4. S.V. Rogozhkin - Study of Nanostructure of Experimental Ti-5Al-4V-2Zr Alloy - S.V. Rogozhkin, I.A. Schastlivaya, V.P. Leonov, A.A. Nikitin, N.N. Orlov, M.A. Kozodaev, A.A. Vasiliev, A.S. Orekhov - Inorganic Materials: Applied Research, 2017, Vol. 8, No. 6, pp. 848-860

5.1. A. Schastlivaya - Investigation of Radiation Resistance and Structural Stability of Titanium α-and Pseudo-α Alloys - I.A. Schastlivaya V.P. Leonov, A.V. Khanzhin, A.V. Obukhov, O.Yu. Makarov, and Yu.S. Kudrin - Inorganic Materials: Applied Research, 2017, Vol. 8, No. 6, pp. 944-950

6. Патент CN 106521239 High-impact-toughness low-activation titanium alloy for nuclear reactor

7. И.И. Корнилов - Титан - M: Изд. Наука,. 1975, с. 92

8. С.С. Ушков, И.Г. Власова, Н.Х. Киевская - Особенности микросегрегаций примесных и легирующих элементов в а- сплавах титана. Физика металлов и металловедение, т. 57, вып. 1, 1984, с 194-197.

Источник поступления информации: Роспатент

Показаны записи 21-25 из 25.
22.07.2020
№220.018.356a

Устройство обнаружения дефектов в сварных швах в процессе сварки

Использование: для обнаружения дефектов в сварных швах в процессе сварки. Сущность изобретения заключается в том, что устройство обнаружения дефектов в сварных швах в процессе сварки содержит измерительный канал, включающий установленный вблизи сварного шва преобразователь акустической эмиссии...
Тип: Изобретение
Номер охранного документа: 0002727065
Дата охранного документа: 17.07.2020
23.07.2020
№220.018.358a

Агломерированный флюс 48аф-72

Изобретение относится к сварочным материалам и может быть использовано для электродуговой сварки под флюсом сталей аустенитного класса проволоками аустенитно-ферритного класса. Флюс содержит компоненты в следующем соотношении, мас.%: электрокорунд 24,5-37, волластонит 27,5-35,0, плавиковый шпат...
Тип: Изобретение
Номер охранного документа: 0002727137
Дата охранного документа: 20.07.2020
21.04.2023
№223.018.50cd

Износостойкий сплав на основе квазикристаллической композиции al-cu-fe

Изобретение относится к области создания износостойких функциональных покрытий на основе квазикристаллов системы Al-Cu-Fe для защиты от механических нагрузок изделий прецизионного машино- и энергомашиностроения. Сплав на основе квазикристаллической композиции Al-Cu–Fe содержит, мас.%: цирконий...
Тип: Изобретение
Номер охранного документа: 0002794146
Дата охранного документа: 11.04.2023
03.06.2023
№223.018.7657

Износостойкий резистивный сплав на основе меди с отрицательным температурным коэффициентом сопротивления

Изобретение относится к области создания резистивных сплавов на основе меди и может быть использовано для получения износостойких покрытий с отрицательным температурным коэффициентом сопротивления при создании миниатюрных датчиков. Сплав на основе меди содержит, мас. %: марганец 18,0-22,0,...
Тип: Изобретение
Номер охранного документа: 0002796582
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.765c

Сплав на основе алюминия для нанесения износостойких покрытий

Изобретение относится к области создания износостойких сплавов на основе алюминия и может быть использовано для получения функциональных покрытий, защищающих элементы прецизионного машино- и приборостроения от действия механических нагрузок. Сплав на основе алюминия содержит, мас.%: олово...
Тип: Изобретение
Номер охранного документа: 0002796583
Дата охранного документа: 25.05.2023
Показаны записи 21-30 из 85.
10.07.2015
№216.013.5cae

Способ изготовления тонких листов из двухфазного титанового сплава и изделие из этих листов

Изобретение относится к области металлургии, в частности к способу изготовления тонких листов из двухфазного титанового сплава с микрокристаллической структурой, которая, в частности, пригодна для сверхпластической деформации при нагреве. Способ включает подготовку шихты, выплавку слитка,...
Тип: Изобретение
Номер охранного документа: 0002555267
Дата охранного документа: 10.07.2015
20.08.2015
№216.013.70e6

Способ получения многослойного материала

Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение...
Тип: Изобретение
Номер охранного документа: 0002560472
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7f07

Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник...
Тип: Изобретение
Номер охранного документа: 0002564116
Дата охранного документа: 27.09.2015
20.11.2015
№216.013.91de

Способ преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение может быть использовано в электронике, приборостроении и машиностроении при создании автономных устройств с большим сроком службы. Способ преобразования энергии ионизирующего излучения в электрическую энергию включает изготовление полупроводникового материала, состоящего из областей...
Тип: Изобретение
Номер охранного документа: 0002568958
Дата охранного документа: 20.11.2015
20.04.2016
№216.015.32f8

Сплав на основе титана

Изобретение относится к области металлургии, в частности к титановым сплавам, и может быть использовано для изготовления конструкций, работающих в агрессивных средах, такой как морская вода, при повышенных температурах. Сплав на основе титана содержит, мас. %: алюминий 3,0-4,2, цирконий...
Тип: Изобретение
Номер охранного документа: 0002582171
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3b23

Способ изготовления холоднодеформированных бесшовных труб из титанового сплава ti-3al-2,5v

Изобретение относится к области металлургии, а именно к изготовлению холоднодеформированных бесшовных труб из титанового сплава Ti-3Al-2,5V. Способ включает производство слитков, ковку слитка в цилиндрическую заготовку за несколько переходов с чередованием деформации в β- и (α+β)-областях....
Тип: Изобретение
Номер охранного документа: 0002583566
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3bb8

Сплав на основе титана

Изобретение относится к области металлургии, а именно к сплавам на основе титана, и предназначено для использования в паротурбинных установках и высоконагруженных сварных конструкциях, эксплуатируемых при повышенной температуре. Сплав на основе титана содержит, мас. %: алюминий 4,3-6,3;...
Тип: Изобретение
Номер охранного документа: 0002583972
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.a220

Способ центробежной отливки тонкостенных труб из жаропрочных сплавов

Изобретение относится к литейному производству и может быть использовано при отливке тонкостенных труб из сложнолегированного жаростойкого жаропрочного сплава 50Х32Н43В5С2Б2, в частности труб диаметром 0,076-0,159 м, толщиной стенки 0,008-0,014 м и длиной 3,0 м. На внутреннюю поверхность формы...
Тип: Изобретение
Номер охранного документа: 0002606824
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b524

Литейный сплав на основе титана

Изобретение относится к области металлургии, в частности к свариваемым литейным сплавам на основе титана и предназначенным для изготовления фасонных отливок литых и сварных гребных винтов, рабочих колес водометных движителей, насосов. Литейный сплав на основе титана содержит, мас.%: алюминий...
Тип: Изобретение
Номер охранного документа: 0002614228
Дата охранного документа: 23.03.2017
+ добавить свой РИД