×
04.10.2019
219.017.d285

Результат интеллектуальной деятельности: Способ получения кристаллов CoSnS

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии выращивания кристаллов CoSnS, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Способ получения кристаллов CoSnS в вакуумированной ампуле из расплава стехиометрического состава состоит в том, что ампулу с предварительно синтезированной загрузкой нагревают в горизонтальной печи до температуры 920-940°С, выдерживают при этой температуре 20-22 часа, а затем охлаждают до комнатной температуры в течение 45-46 часов. Изобретение позволяет получать монокристаллы CoSnS. 1 ил., 3 пр.

Изобретение относится к области выращивания кристаллов неорганических соединений.

Co3Sn2S2 - это материал, вызывающий в настоящее время повышенный интерес в экспериментальной физике как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Для развития этих исследований, а также для возможных практических применений Co3Sn2S2, необходима разработка способов выращивания монокристаллов.

Наиболее близким по технической сущности к предлагаемому является способ выращивания кристаллов Co3Sn2S2 из расплава [М. Holder, Yu. S. Dedkov, A. Kade, H. Rosner, W. Schnelle, A. Leithe-Jasper, R. Weihrich, S.L. Molodtsov. Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2. Physical Review B, 79, 205116 (2009)] - прототип, в котором предварительно синтезированную загрузку Co3Sn2S2 стехиометрического состава нагревают в вакуумированной ампуле, в вертикальной печи, до 1000°С, выдерживают при этой температуре 6 часов, а затем охлаждают до температуры 800°С в течение 72 часов, после чего отключают электропитание печи и охлаждают ампулу до комнатной температуры вместе с печью. Основным недостатком этого метода является то, что полученные кристаллы «состоят из нескольких крупных зерен», то есть являются поликристаллами. Таким образом, способ-прототип не позволяет выращивать монокристаллы Co3Sn2S2.

Задачей данного изобретения является получение монокристаллов Co3Sn2S2.

Эта задача решается в предлагаемом способе за счет того, что процесс проводится в вакуумированной ампуле из расплава стехиометрического состава в горизонтальной печи, ампулу с загрузкой нагревают до температуры 920-940°С, выдерживают при этой температуре 20-22 часа, а затем охлаждают до комнатной температуры в течение 45-46 часов.

Предлагаемым способом получены монокристаллы Co3Sn2S2, имеющие гексагональную структуру, что подтверждается рентгеноструктурными исследованиями по методу Лауэ в различных точках кристалла. На фотографии Фиг. 1 представлен монокристалл, сколотый по плоскости спайности (). Показаны кристаллографические плоскости, определенные по лауэграммам: (0001) на ростовой поверхности и () на сколе.

Параметры процесса выбраны экспериментально.

Проведение процесса в горизонтальной печи позволяет осуществляться кристаллизации в кристаллографических направлениях, перпендикулярных призматическим плоскостям, например, в направлений [],как в кристалле, представленном на Фиг. 1. В гексагональных кристаллах это обеспечивает сохранение подвижности дислокаций, что предотвращает образование замкнутых дислокационных стенок, часто приводящих к образованию блоков и получению поликристаллов.

При температуре нагрева ниже 920°С не происходит полной гомогенизации расплава. В результате в кристалле образуются блоки, отличающиеся по составу. Подъем температуры выше 940°С не дает дальнейшего положительного эффекта, причем возрастает риск разрушения ампулы вследствие роста давления собственных паров Co3Sn2S2.

Продолжительность выдержки расплава менее 20 часов не обеспечивает полной гомогенизации расплава, что приводит к появлению блочной структуры. Увеличение продолжительности выдержки свыше 22 часов не дает дальнейшего положительного эффекта.

При времени охлаждения менее 45 часов кристалл растрескивается под действием остаточных термических напряжений. Увеличение времени охлаждения свыше 46 часов не дает дальнейшего положительного эффекта.

Пример 1.

Предварительно синтезированную загрузку Co3Sn2S2 стехиометрического состава помещают в ампулу из кварцевого стекла. Ампулу вакуумируют и герметизируют, затем помещают в горизонтальную электропечь сопротивления и нагревают до температуры 920°С. При этой температуре ампулу с расплавленной загрузкой выдерживают 22 часа, а затем охлаждают до комнатной температуры в течение 45 часов. Получен монокристалл Co3Sn2S2.

Пример 2.

Предварительно синтезированную загрузку Co3Sn2S2 стехиометрического состава помещают в ампулу из кварцевого стекла. Ампулу вакуумируют и герметизируют, затем помещают в горизонтальную электропечь сопротивления и нагревают до температуры 930°С. При этой температуре ампулу с расплавленной загрузкой выдерживают 21 час, а затем охлаждают до комнатной температуры в течение 45 часов 30 минут. Получен монокристалл Co3Sn2S2, показанный на Фиг. 1.

Пример 3.

Предварительно синтезированную загрузку Co3Sn2S2 стехиометрического состава помещают в ампулу из кварцевого стекла. Ампулу вакуумируют и герметизируют, затем помещают в горизонтальную электропечь сопротивления и нагревают до температуры 940°С. При этой температуре ампулу с расплавленной загрузкой выдерживают 20 часов, а затем охлаждают до комнатной температуры в течение 46 часов. Получен монокристалл Co3Sn2S2.

Способ получения кристаллов CoSnS в вакуумированной ампуле из расплава стехиометрического состава, отличающийся тем, что процесс проводится в горизонтальной печи, ампулу с загрузкой нагревают до температуры 920-940°С, выдерживают при этой температуре 20-22 часа, а затем охлаждают до комнатной температуры в течение 45-46 часов.
Способ получения кристаллов CoSnS
Источник поступления информации: Роспатент

Показаны записи 41-50 из 91.
21.03.2019
№219.016.eb97

Электрод для дуговой плавки металлов

Изобретение относится к электроду для дуговой плавки металлов и может быть использовано для плавления металлических порошков, прецизионной сварки тонколистовых металлов и изготовления деталей сложной геометрической формы в среде защитных газов. Электрод для дуговой плавки металлов содержит...
Тип: Изобретение
Номер охранного документа: 0002682553
Дата охранного документа: 19.03.2019
04.04.2019
№219.016.fc6b

Способ обнаружения шумящих в море объектов

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Достигаемым техническим результатом изобретения является повышение достоверности обнаружения и длительного поддержания контакта с шумящей движущейся в море целью. Способ включает прием шумовых...
Тип: Изобретение
Номер охранного документа: 0002339050
Дата охранного документа: 20.11.2008
19.04.2019
№219.017.344b

Способ автоматической классификации

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации объектов, обнаруженных гидролокаторами ближнего действия. Техническим результатом изобретения является обеспечение автоматической классификации объекта. Для этого осуществляют излучение...
Тип: Изобретение
Номер охранного документа: 0002461020
Дата охранного документа: 10.09.2012
18.05.2019
№219.017.57cb

Ключевое устройство (варианты)

Изобретение относится к области усилительной и генераторной техники и может быть использовано в гидротехнических и гидроакустических передающих трактах. Техническим результатом от использования обоих вариантов изобретения является обеспечение номинальной амплитуды импульсных сигналов управления...
Тип: Изобретение
Номер охранного документа: 0002372710
Дата охранного документа: 10.11.2009
24.05.2019
№219.017.5fd8

Способ получения информации о шумящих в море объектах

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Способ содержит следующие операции. Принимают шумовые сигналы в горизонтальной и вертикальной плоскостях, осуществляют частотно-временную обработку в каждом пространственном канале наблюдения,...
Тип: Изобретение
Номер охранного документа: 0002353946
Дата охранного документа: 27.04.2009
29.05.2019
№219.017.6829

Способ производства литой мишени для магнетронного распыления из сплава на основе молибдена

Изобретение относится к области металлургии цветных металлов и может быть использовано при производстве распыляемых металлических мишеней для нанесения тонкопленочной металлизации различного назначения в микроэлектронике и других высоких технологиях. Заявлены способ производства литой мишени...
Тип: Изобретение
Номер охранного документа: 0002454484
Дата охранного документа: 27.06.2012
29.05.2019
№219.017.682a

Способ производства литой мишени из сплава на основе тантала для магнетронного распыления

Изобретение относится к области металлургического производства распыляемых металлических мишеней для микроэлектроники, а также к изготовлению интегральных схем и тонкопленочных конденсаторов на основе тантала и его сплавов. Заявлены способ производства литой мишени для магнетронного распыления...
Тип: Изобретение
Номер охранного документа: 0002454483
Дата охранного документа: 27.06.2012
04.06.2019
№219.017.7349

Способ внутриволноводной терагерцовой интерферометрии и сапфировая ячейка для его реализации

Группа изобретений относится к интерферометрии. При осуществлении способа излучение вводят в двухмодовый волновод, часть которого занимает анализируемое вещество, и выводят через фигурную диафрагму, где на расстоянии, превышающем на порядок среднюю длину волны используемого излучения (>10λ),...
Тип: Изобретение
Номер охранного документа: 0002690319
Дата охранного документа: 31.05.2019
09.06.2019
№219.017.7db1

Способ получения составной мишени для распыления из сплава вольфрам-титан-кремний

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454481
Дата охранного документа: 27.06.2012
09.06.2019
№219.017.7db3

Способ получения составной мишени для распыления из сплава вольфрам-титан-рений

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454482
Дата охранного документа: 27.06.2012
Показаны записи 41-42 из 42.
16.05.2023
№223.018.5ecf

Электродуговой способ получения слитков timnal

Изобретение относится к области металлургии, в частности к получению сплава Гейслера в виде слитков, пригодных для изучения свойств спин-поляризованного бесщелевого полупроводника TiMnAl. Способ получения слитков сплава TiMnAl из смеси алюминия, марганца и титана включает подготовку смеси...
Тип: Изобретение
Номер охранного документа: 0002754540
Дата охранного документа: 03.09.2021
16.05.2023
№223.018.6357

Электродуговой способ получения прецизионного сплава timnal

Изобретение относится к области металлургии прецизионных сплавов и может быть использовано для получения сплава Гейслера. Осуществляют сплавление смеси порошков алюминия, марганца и титана в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия...
Тип: Изобретение
Номер охранного документа: 0002776576
Дата охранного документа: 22.07.2022
+ добавить свой РИД