×
02.10.2019
219.017.d0f6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ОТЛОЖЕНИЙ НА ВНУТРЕННЕЙ ПОВЕРХНОСТИ ТРУБОПРОВОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, применяемой для контроля состояния трубопроводов, и предназначено для определения толщины отложений на внутренней поверхности трубопроводов, в частности, для определения толщины асфальтосмолопарафиновых отложений в нефтепроводах. Согласно заявленному способу на трубопроводе соосно с ним располагают основной кольцевой нагреватель, под которым равномерно по окружности располагают несколько термодатчиков. Также устанавливают два дополнительных кольцевых нагревателя-термобарьера на одинаковых расстояниях по обе стороны от основного нагревателя. Весь участок трубопровода между нагревателями-термобарьерами теплоизолируют от окружающей среды. Включают одновременно все нагреватели, затем отключают их, при этом непрерывно регистрируют температуру с помощью термодатчиков. По параметрам полученных временных диаграмм определяют толщину отложений. Технический результат - уменьшение случайной погрешности измерения толщины слоя отложений и повышение достоверности этих измерений за счет сужения области измерений по длине трубы и перенаправления теплового потока от нагревателя внутрь слоя отложений, а также за счет детализации измерений толщины слоя отложений в интересующем сечении трубы. 2 ил.

Изобретение относится к измерительной технике, применяемой для контроля состояния трубопроводов, и предназначено для определения толщины отложений на внутренней поверхности трубопроводов, в частности, для определения толщины асфальтосмолопарафиновых отложений в нефтепроводах.

Известны различные способы определения толщины слоя отложений на внутренней поверхности трубопроводов. Так, один из способов [Патент РФ №2445545. МПК F17D 3/00. Опубл. 20.03.2012] основан на использовании обратной зависимости между скоростью потока жидкости в трубопроводе и площадью проходного сечения трубопровода. Однако такой способ может дать только обобщенные приблизительные значения толщины отложений для определенного участка трубы.

Более детальную информацию о толщине слоя отложений для конкретного сечения трубы могут дать ультразвуковые способы. Например, способ [Патент РФ №2098754. МПК G01B 17/02. Опубл. 10.12.1997], согласно которому с наружной стороны трубы организуют ввод ультразвуковых колебаний по нормали к поверхности трубы и прием ультразвуковых колебаний, прошедших через трубу, измеряют интенсивность прошедших через трубу ультразвуковых колебаний и сравнивают ее с интенсивностью ультразвуковых колебаний, прошедших через такую же трубу, заполненную такой же жидкостью, но не имеющую отложений и по этому сравнению судят о толщине отложений в трубе. Однако результат будет содержать неразделимую информацию об отложениях как под излучателем, так и под приемником ультразвука. Ультразвуковые способы отличаются сложностью реализации и зависимостью от физических параметров транспортируемой жидкости (в частности, от содержания в ней свободного газа).

Наиболее просто реализуются тепловые способы контроля отложений, основанные на изменении условий теплопередачи в трубе при росте толщины отложений. Один из таких способов [US Pat. №9176044. МПК G01N 25/72. Publ. Nov. 3, 2015] заключается в том, что в трубу врезают элемент, в котором совмещены нагреватель и датчик температуры, причем чувствительную поверхность датчика располагают так, чтобы она сопрягалась с внутренней поверхности трубы. Нагреватель включают на определенное время, затем отключают. При этом регистрируют показания температурного датчика. Они будут существенно отличаться для чистой трубы и для трубы с внутренними отложениями, которые ухудшают условия теплообмена. По параметрам зависимостей температуры от времени рассчитывают толщину отложений. Достоинством способа является возможность контроля толщины отложений в любом сечении трубы и в любой точке окружности данного сечения.

Однако серьезным недостатком описанного решения является необходимость врезки специальных функциональных элементов в стенку трубопровода, что ограничивает возможности его применения.

От указанного недостатка свободен способ [US Pat. №6886393. МПК G01N 25/00. Publ. May 3, 2005], в котором на наружной поверхности трубы соосно с ней на определенном расстоянии друг от друга располагают кольцевые нагреватель и термодатчик. В этом случае не требуется применять какие-либо механические воздействия на трубопровод и останавливать технологический поток. Нагреватель включают и отключают с определенной периодичностью. Термодатчиком регистрируют форму сигнала, соответствующую количеству тепла, перенесенного по участку трубы. Если внутренняя поверхность трубы чистая, то, благодаря интенсивному теплоотводу в транспортируемую жидкость, до термодатчика будет доходить лишь небольшая часть тепла. Если же внутренняя поверхность трубы теплоизолирована от жидкости слоем отложений, то по стенке трубы до термодатчика будет доходить гораздо большая часть теплового потока. По параметрам снятых временных диаграмм рассчитывают толщину слоя отложений.

Недостаток способа состоит в интегральном характере получаемых результатов (рассчитывается средняя по длине участка трубы толщина отложений и не детализируются неравномерности отложений по окружности в сечениях трубы). Кроме того, чувствительность результата к толщине слоя отложений не очень велика, так как большая часть теплового потока распространяется вдоль стенки трубы в обоих направлениях и никак не связана с отложениями.

Последний из отмеченных отрицательных факторов может быть значительно ослаблен за счет введения нагревателей-термобарьеров. Пример введения такого термобарьера реализован в способе [Патент РФ №2449207. МПК G01B 17/02. Опубл. 27.04.2012]. Суть этого способа состоит в том, что на наружной поверхности трубы кроме основного точечного нагревателя и расположенного под ним термодатчика формируют второй нагреватель, который окружает основной. Одновременное включение нагревателей приводит к тому, что вокруг основного нагревателя в стенке трубы под вторым нагревателем формируется эквитермальная зона, которая изменяет градиент температур. Большая часть теплового потока вместо распространения по стенке трубы направляется внутрь трубы через слой отложений. Вследствие этого зависимость температуры, регистрируемой термодатчиком, от толщины слоя отложений становится более ярко выраженной. Толщина слоя отложений рассчитывается по параметрам снятой временной диаграммы.

Однако данный способ ориентирован на точечную оценку толщины отложений, тогда как для надежного контроля отложений требуется определять их толщину в нескольких точках окружности данного сечения трубы. Размещать же несколько описанных структур по окружности на наружной поверхности трубы представляется нецелесообразным и труднореализуемым, особенно для трубопроводов малого диаметра.

Наиболее близким по технической сущности к предлагаемому изобретению является способ определения толщины отложений на внутренней поверхности трубопровода [Патент РФ №2344338. МПК G01B 17/02. Опубл. 20.01.2009], включающий размещение на трубопроводе соосно с ним кольцевого нагревателя и группы термодатчиков, располагаемых в одну линию на поверхности трубопровода параллельно его оси. Кольцевой нагреватель включают, и, после установления термодинамического равновесия, регистрируют распределение температуры вдоль поверхности трубы с помощью группы термодатчиков. С увеличением расстояния от нагревателя температура экспоненциально уменьшается. Крутизна этой зависимости зависит от условий теплообмена с жидкостью: если слоя отложений нет, то температура падает очень быстро; если же отложения имеются, то они ухудшают теплообмен, и чем толще слой, тем медленнее изменяется температура. Таким образом, по параметрам указанной зависимости определяют толщину слоя отложений.

Рассмотренный способ имеет низкую чувствительность к толщине отложений, так как распространение тепла от нагревателя происходит преимущественно внутри стенки трубы, и лишь малая часть попадает в слой отложений и в жидкость, вследствие чего зависимость измеряемого параметра от толщины отложений невелика, а значит, результирующая погрешность определения толщины слоя отложений будет большой.

Другим недостатком способа является то, что результат измерений формируется на довольно длинном отрезке трубы, по длине которого отложения могут иметь разную толщину. Результат при этом является осредненным для данного отрезка, а его достоверность (оцениваемая как доверительная вероятность нахождения погрешности в определенных пределах) применительно к отдельному сечению трубы невысока.

Достоверность измерений невелика также вследствие того, что в любом сечении трубы толщина отложений по окружности внутренней поверхности трубы также в общем случае непостоянна, а измерения проводятся только для одной точки окружности.

Задачей данного изобретения является обеспечение точных и достоверных измерений толщины слоя отложений на внутренней поверхности трубопровода в заданном его сечении.

Технический результат заключается в уменьшении случайной погрешности измерения толщины слоя отложений и повышении достоверности этих измерений за счет сужения области измерений по длине трубы и перенаправления теплового потока от нагревателя внутрь слоя отложений, а также за счет детализации измерений толщины слоя отложений в интересующем сечении трубы.

Задача решается тем, что в известном способе определения толщины отложений на внутренней поверхности трубопровода, включающем размещение на трубопроводе соосно с ним основного кольцевого нагревателя и измерение температуры на поверхности трубопровода с помощью группы термодатчиков, дополнительно на трубопроводе соосно с ним устанавливают два дополнительных кольцевых нагревателя-термобарьера на одинаковых расстояниях по обе стороны от основного нагревателя, весь участок трубопровода между нагревателями-термобарьерами теплоизолируют от окружающей среды, включают одновременно все нагреватели, затем отключают их, при этом непрерывно измеряют температуру на трубе под основным нагревателем в нескольких точках с помощью термодатчиков, равномерно распределенных по окружности вокруг трубы, затем по полученным временным диаграммам изменения температуры определяют толщину отложений.

Сущность изобретения поясняется следующими иллюстрациями. На фиг. 1 показан чертеж части трубопровода, на которой реализован предлагаемый способ. На фиг. 2 приведены примерные временные диаграммы сигнала на одном из термодатчиков для случаев чистого трубопровода (фиг. 2, а) и трубопровода с отложениями на внутренней поверхности (фиг. 2, б).

На фиг. 1 цифрами обозначены: 1 - стенка трубопровода; 2 - транспортируемая жидкость; 3 - отложения на внутренней поверхности трубопровода; 4 - основной кольцевой нагреватель; 5 - термодатчики; 6 - первый нагреватель-термобарьер; 7 - второй нагреватель-термобарьер; 8 - термоизолятор.

Способ осуществляется следующим образом. На исследуемом трубопроводе 1 соосно с ним на его наружной поверхности размещают основной кольцевой нагреватель 4, под которым предварительно равномерно по окружности распределяют несколько термодатчиков 5. На трубопроводе 1 также соосно с ним устанавливают два дополнительных кольцевых нагревателя-термобарьера 6 и 7 на одинаковых расстояниях по обе стороны от основного нагревателя 4, весь участок трубопровода 1 между нагревателями-термобарьерами 6 и 7 теплоизолируют от окружающей среды с помощью слоя термоизолятора 8. Все нагреватели 4, 6 и 7 включают одновременно на определенное время τ1 (фиг. 2), в течение которого достигается заметное повышение температуры под нагревателями, но еще не достигается термодинамическое равновесие. После отключения всех нагревателей 4, 6, 7 происходит понижение температуры до исходной в течение времени τ2. Все изменения температуры в нескольких точках под основным нагревателем 4 непрерывно регистрируют с помощью соответствующих термодатчиков 5. Для каждого термодатчика по полученным данным строят временную диаграмму (фиг. 2), по параметрам которой затем определяют толщину отложений под термодатчиком. Необходимость определения толщины в нескольких точках окружности обусловлена тем, что в поперечном сечении трубы (сечение А-А на фиг. 1) толщина отложений в общем случае неодинакова, и одиночный датчик не может дать объективной картины отложений.

Термоизолятор 8 препятствует распространению теплового потока от нагревателя 4 в окружающую среду, а благодаря действию нагревателей-термобарьеров 6, 7, создающих в стенке трубы по обе стороны от нагревателя 4 эквитермальные кольцевые зоны, градиент температур от нагревателя 4 направляется не вдоль стенки трубы 1, а отклоняется внутрь трубы, в слой отложений 3 и в жидкость 2, что делает характер получаемых временных диаграмм более зависимым от слоя отложений, что в конечном счете повышает точность определения толщины слоя отложений.

Отличие временных диаграмм, показанных на фиг. 2, одна из которых соответствует чистому трубопроводу (фиг. 2, а; толщина отложений δ=0), а другая - трубопроводу с отложениями (фиг. 2, б; δ≠0), объясняется следующим. В случае δ=0 при включенных нагревателях происходит интенсивный теплообмен стенки трубы с жидкостью, поэтому за фиксированное время τ1 она не очень сильно разогревается от исходной температуры T1 до температуры Т2, а потом, после отключения нагревателей, она быстро остывает по этой же причине (интервал времени остывания τ2 до исходной температуры при этом относительно короткий). В случае наличия отложений (δ≠0) за то же самое время нагрева τ1 стенка трубы нагреется гораздо сильнее (температура Т2 будет заметно выше, чем в предыдущем случае), так как теплообмен с жидкостью затруднен - труба отделена от жидкости слоем отложений, и чем толще этот слой, тем сильнее теплоизоляция. После отключения нагревателей по той же самой причине наличия теплоизоляции трубы от жидкости остывание происходит медленно (время остывания τ2 относительно велико), причем τ2 будет тем больше, чем больше толщина слоя отложений δ.

Динамика изменения температуры, регистрируемая разными термодатчиками группы 5, в общем случае может оказаться различной, так как условия теплообмена в разных частях сечения трубы различны вследствие неравномерности толщины слоя отложений. Поэтому конечный результат получают в виде группы значений толщины слоя отложений δ для каждого места установки термодатчиков.

Определение числовых значений δ производят по заранее снятым градуировочным зависимостям. Такими функциональными зависимостями могут быть, например δ=ƒ(τ2) или δ=ƒ(T2-T1). Возможно также использование сразу двух параметров процесса, т.е. функции δ=ƒ(τ2, T2-T1). Для эмпирического определения таких зависимостей используют включенный в контур с циркулирующей жидкостью фрагмент трубы из того же материала, такого же диаметра и с такой же толщиной стенки, что и на объекте измерения. На этом фрагменте размещают описанные элементы, имитируют отложения с несколькими разными значениями толщины, и для каждого из них реализуют описанный выше способ измерения и фиксируют интересующие параметры, например, τ2 или Т21. При этом фрагмент трубы должен заполняться жидкостью, совпадающей по составу с той, что используется на объекте измерения. Скорость движения жидкости также должна соответствовать скорости движения жидкости на объекте измерения. По снятым градуировочным отсчетам строится эмпирическая зависимость заранее выбранного вида путем определения коэффициентов при аргументах (последнее выполняют, например, с помощью метода наименьших квадратов [Алиев Т.А. Экспериментальный анализ. - М.: Машиностроение, 1991. - С. 127-133]).

Пример конкретной реализации предлагаемого способа.

Требуется определять толщину слоя парафина в стальном нефтепроводе с наружным диаметром 45 мм и толщиной стенки 2 мм. На трубе располагают основной кольцевой электронагреватель, под которым смонтированы 4 равномерно распределенных по окружности термодатчика типа LM35, каждый из которых подключают к микроконтроллеру или компьютеру, что позволяет непрерывно производить отсчеты температуры. По обе стороны от основного нагревателя на расстоянии 10 мм размещают нагреватели-термобарьеры. Все нагреватели имеют ширину 6 мм и мощность 100 Вт. Все нагреватели подключают одновременно к источнику питания на τ1=10 с, при этом термодатчики регистрируют повышение температуры. Затем их отключают. После того, как температура под каждым из датчиков опускается до исходной, цикл измерения может быть повторен.

Вычисление толщины слоя парафина δ производят по заранее определенной градуировочной формуле δ=ƒ(τ2), которая поучена на основе градуировочных операций, в ходе которых в отрезке трубы с описанными элементами искусственно на внутренней поверхности последовательно наращивают слой парафина толщиной 2, 5 и 10 мм, и для каждого из этих значений (а также для чистой трубы) измеряют соответствующие значения τ2. При этом в трубопроводном контуре, в который врезают градуировочный образец трубы, поддерживают все те условия, которые должны быть на объекте измерения: сорт нефти, состав парафиновых отложений, скорость течения жидкости (0,5 м/с). Например, для полученных пар значений (δ=0; τ2=67 с), (δ=2 мм; τ2=84 с), (δ=5 мм; τ2=130 с), (δ=10 мм; τ2=334 с) с помощью метода наименьших квадратов определены коэффициенты аппроксимирующего степенного многочлена второй степени, который и составляет градуировочную формулу: δ=-6,73+0,12τ2-0,0002 (τ2)2. По данной формуле в процессе измерений на объекте рассчитывают толщину отложений для каждого из 4-х термодатчиков.

Таким образом, предлагаемый способ по сравнению со способом-прототипом за счет установки на трубопроводе двух дополнительных кольцевых нагревателей-термобарьеров по обе стороны от основного нагревателя позволяет сузить область измерений по длине трубы и увеличить чувствительность регистрируемых параметров к толщине слоя отложений, что в конечном счете повышает точность и достоверность измерений толщины этого слоя. Достоверность измерений толщины отложений повышаются также за счет выполнения дополнительных измерений толщины отложений по окружности на внутренней поверхности трубы под кольцевым нагревателем.

По сравнению с прототипом предлагаемый способ более выгоден также с точки зрения быстродействия: у него более короткий цикл измерения, так как в основе измерения лежит динамика тепловых процессов, и для проведения измерений не нужно ожидать установления термодинамического равновесия.

Способ определения толщины отложений на внутренней поверхности трубопровода, включающий размещение на трубопроводе соосно с ним основного кольцевого нагревателя и измерение температуры на поверхности трубопровода с помощью группы термодатчиков, отличающийся тем, что на трубопроводе соосно с ним устанавливают два дополнительных кольцевых нагревателя-термобарьера на одинаковых расстояниях по обе стороны от основного нагревателя, весь участок трубопровода между нагревателями-термобарьерами теплоизолируют от окружающей среды, включают одновременно все нагреватели, затем отключают их, при этом непрерывно измеряют температуру на трубе под основным нагревателем в нескольких точках с помощью термодатчиков, равномерно распределенных по окружности вокруг трубы, затем по полученным временным диаграммам изменения температуры определяют толщину отложений.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 146.
26.08.2017
№217.015.edc7

Способ изготовления комбинированной полой лопатки турбомашины из алюминиевого сплава

Изобретение относится к способам изготовления лопаток турбомашин. Способ изготовления полой лопатки турбомашины из алюминиевого сплава заключается в формировании элементов спинки и корыта лопатки путем придания пластинам из алюминиевого сплава заданного профиля и размеров, их фиксации,...
Тип: Изобретение
Номер охранного документа: 0002628843
Дата охранного документа: 22.08.2017
29.12.2017
№217.015.f0b8

Способ диагностики помпажа компрессора газотурбинного двигателя и устройство для его реализации

Группа изобретений относится к способу диагностики помпажа компрессора газотурбинного двигателя и устройству для диагностики помпажа компрессора газотурбинного двигателя. Техническим результатом является повышение достоверности и быстродействия определения начала помпажа на всех режимах работы...
Тип: Изобретение
Номер охранного документа: 0002638896
Дата охранного документа: 18.12.2017
19.01.2018
№218.016.02c3

Способ управления стартер-генератором, интегрированным в газотурбинный двигатель, при коротком замыкании

Изобретение относится к области энергомашиностроения и может быть использовано в авиационных стартер-генераторах, интегрированных в авиационный газотурбинный двигатель. Технический результат: стабильная работа системы защиты от короткого замыкания в стартер-генераторе при высокой температуре...
Тип: Изобретение
Номер охранного документа: 0002630285
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.05f3

Электропривод летательного аппарата (варианты)

Группа изобретений относится к авиакосмическим летательным аппаратам. Электропривод для летательного аппарата содержит корпус, шарико-винтовую пару, состоящую из гайки и винта, аксиальный подшипник, электродвигатель, зубчатую передачу, датчик положения ротора, демпфер и систему управления....
Тип: Изобретение
Номер охранного документа: 0002630966
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0c45

Форсунка с ультразвуковым излучателем

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложена топливная форсунка для ДВС, содержащая составной корпус 1 с топливным каналом высокого давления 7, распылитель 3 с иглой 2, штангу 5. В верхней части корпуса 1 форсунки закреплен...
Тип: Изобретение
Номер охранного документа: 0002632639
Дата охранного документа: 06.10.2017
20.01.2018
№218.016.10cf

Способ низкотемпературного ионного азотирования титановых сплавов

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002633867
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.153d

Устройство защиты от короткого замыкания высокотемпературного стартер-генератора обращённой конструкции

Использование: в области электротехники. Технический результат: защита от короткого замыкания стартер-генератора обращенной конструкции в составе газотурбинного двигателя в температурном режиме до 450°С за счет механического расцепления статора с неподвижным стержнем, сопровождающегося...
Тип: Изобретение
Номер охранного документа: 0002634836
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1b7e

Гибридный магнитный подшипник с использованием сил лоренца (варианты)

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные...
Тип: Изобретение
Номер охранного документа: 0002636629
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1d36

Способ изготовления полой лопатки газотурбинного двигателя

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления полой лопатки вентилятора газотурбинного двигателя из титанового сплава. Используют трехслойные заготовки обшивок и/или заполнителя, причем внешние слои заготовок выполняют из титанового...
Тип: Изобретение
Номер охранного документа: 0002640692
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d3f

Способ упрочнения и формирования винтового арматурного стержня

Изобретение относится к области упрочнения и формирования винтового профиля, в частности арматурных стержней, используемых для изготовления железобетонных элементов. Способ включает скручивание арматурной заготовки вокруг своей продольной оси. Повышение прочности арматурных стержней...
Тип: Изобретение
Номер охранного документа: 0002640705
Дата охранного документа: 11.01.2018
Показаны записи 1-3 из 3.
10.08.2015
№216.013.6bd6

Интеллектуальный бесконтактный мутномер

Использование: изобретение относится к области измерительной техники и может быть использовано для контроля мутности жидких дисперсных сред, экологического мониторинга, определения концентрации эмульсий и суспензий. Интеллектуальный бесконтактный мутномер содержит сосуд-стабилизатор с входным...
Тип: Изобретение
Номер охранного документа: 0002559164
Дата охранного документа: 10.08.2015
26.08.2017
№217.015.e38f

Система гранулометрического анализа жидких дисперсных сред

Изобретение относится к области измерительной техники и может быть использовано для определения гранулометрического состава жидких дисперсных сред в химической, лакокрасочной промышленностях, в биологии, экологии и других областях науки, связанных с определением размера взвешенных частиц....
Тип: Изобретение
Номер охранного документа: 0002626381
Дата охранного документа: 26.07.2017
24.07.2020
№220.018.3711

Легкий беспилотный летательный аппарат вертолетного типа

Изобретение относится к авиационной технике, а именно к малоразмерным беспилотным летательным аппаратам. Беспилотный летательный аппарат вертолетного типа содержит цилиндрический корпус, в центральной части которого по оси его симметрии размещена силовая установка с двумя соосными винтами...
Тип: Изобретение
Номер охранного документа: 0002727333
Дата охранного документа: 21.07.2020
+ добавить свой РИД