×
02.10.2019
219.017.d05c

СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ВЯЗКОСТИ ВЕЩЕСТВА МАЛОГО ОБЪЕМА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к определению коэффициента вязкости жидкости малого объема с помощью электрофореза. Способ включает подготовку исследуемой и эталонной жидкостей, погружение лакмусовой бумаги в вещество, размещение электродов. При этом лакмусовую бумагу заправляют под шайбы клемм, к которым прикручены электроды, по центру лакмусовой бумаги помещают нить, смоченную гидроксидом натрия, задают напряжение в электрической цепи постоянного тока не более 80 В и подключается электрический ток, исследование проводят сначала с эталонной жидкостью, затем с исследуемой жидкостью, по изменению цвета лакмусовой бумаги определяется расстояние, пройденное ионом ОН, фиксируется время, затем вязкость исследуемого вещества определяется с использованием заданного соотношения. Также представлен прибор для определения вязкости вещества малого объема при помощи электрофореза. Достигается возможность исследования жидкостей различной степени вязкости в малых объемах от 0,2 до 1 мл. 2 н.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение предназначено для определения коэффициента вязкости жидкости малого объема с помощью электрофореза и может быть использовано в офтальмологии для определения коэффициент вязкости биологических жидкостей малых объемов, например, коэффициента вязкости слезной жидкости.

Способы определения значения коэффициента вязкости жидкостей достаточно хорошо разработаны, но все они применимы для сравнительно больших объемов жидкости.

Капиллярный метод Осальда показан на фиг. 1, использующийся для определения коэффициента вязкости крови, в основе действия которого лежит закон Пуазейля, определяющий объем жидкости, протекающей за время t капилляр длиной

Определенный объем жидкости вливают в широкое колено вискозиметра, а затем с помощью груши поднимают уровень жидкости в узком колене так, чтобы он поднялся чуть выше отметки А. Сняв грушу, наблюдают за понижением этого уровня. Когда мениск проходит метку А, включают секундомер, а при прохождении метки В - выключают. Так находят время прохождения жидкости между метками А и В. С целью исключения определения параметров капилляра и давления проводят последовательно измерения для крови и эталонной жидкости (дистиллированная вода). Из закона Пуазейля определяют коэффициенты вязкости крови и воды для Одного и того же объема капилляра. Находя соотношения между этими коэффициентами, определяют рабочую формулу для определения коэффициента вязкости крови Здесь η и t - коэффициент вязкости крови и время ее протекания через капилляр, η0 и t0 - коэффициент вязкости воды и время ее протекания через капилляр.

Широко распространенным методом измерения коэффициента вязкости биологических жидкостей является метод вискозиметрии Гесса. В основе его действия также лежит закон Пуазейля. Схема прибора показана на фиг. 2. На панели П установлены два совершенно одинаковых капилляра, а и 6, соединенные с проградуированными трубками А и Б. Концы трубок А и Б соединены тройником В с краном Г. В капилляр 6 помощью резиновой трубки Д со стеклянным наконечником Е набирается биологическая жидкость, коэффициент вязкости которой мы измеряем, в капилляр а при закрытом кране Г набирается эталонная жидкость, дистиллированная вода, коэффициент вязкости которой известен заранее. Затем кран Г открывают и одновременно из капилляров с помощью трубки Д и наконечника Е извлекают обе жидкости до тех пор, пока кровь не дойдет до деления 1, а вода, как менее вязкая (по сравнению с исследуемой жидкостью), дойдет до более высокой метки. Время истекания жидкостей из трубок одинаковы, но объемы ушедших из одинаковых трубок жидкостей различны из-за различия коэффициентов вязкости. Находя соотношение объемов жидкостей и принимая VK=1, находим относительную вязкость крови по показаниям делений на капилляре с водой.

Известны методы определения коэффициента вязкости с помощью ротационных вискозиметров, в которых коэффициент вязкости измеряется в пространстве между двумя роторами при ламинарном течении жидкости на основе зависимости вращательного момента сил сопротивления от коэффициента вязкости.

Нам известны запатентованные методы определения коэффициента вязкости с использованием ротационных вискозиметров (патент №№164550, заявка №2016106880, класс МПК G01N 11/14, дата приоритета 25.02.2016, дата публикации 10.09.2016). Наряду со многими достоинствам и у ротационных вискозиметров имеется один существенный недостаток - выделение теплоты в слое исследуемой жидкости, что осложняет исследование и заставляет пересчитывать результаты с поправкой на тепловые эффекты.

В лабораторной практике коэффициент вязкости определяют часто методом Стокса, обосновавшего, что вязкость проявляется не только при движении жидкости по трубе, но и при движении тел в жидкости. Поэтому для определения жидкости этим методом в цилиндр, наполненный исследуемой жидкостью плотностью ρж, бросают шарик с известной плотностью ρш.

Рассматривая равномерное прямолинейное движение шарика, что соответствует обтеканию шарика жидкостью при ламинарном движении, составляют уравнение равномерного прямолинейного движения шарика по установленному пути, определяют скорость V движения шарика и, решая уравнение относительно V, определяют коэффициент вязкости по формуле: где r - радиус шарика, g - ускорение свободного падения.

Все рассмотренные методы являются удобными в работе, но для их осуществления требуется большой объем испытываемой жидкости, и они не пригодны для определения коэффициента вязкости жидкостей малых объемов, например, слезной жидкости.

При этом вопрос определения вязкости слезы в диагностической практике является актуальным и очень важным.

Техническим результатом предлагаемого изобретения является возможность исследования жидкостей различной степени вязкости в малых объемах от 0,2 до 1 мл.

Мы предлагаем способ определения коэффициента вязкости вещества малого объема при помощи электрофореза на лакмусовой бумаге, основанный, как и метод Стокса, на равномерном движении иона OH- под действием постоянного электрического тока. Теоретическое обоснование метода приводится ниже:

В постоянном электрическом поле на ионы в растворе электролита действуют две силы: сила со стороны электрического поля

(здесь q - заряд иона, E - напряженность электрического поля) и сила сопротивления между гидратированным ионом и раствором электролита (исследуемая жидкость)

где R - радиус гидратированного иона, η - вязкость электролита. Движение иона можно рассматривать как равномерное и прямолинейное, поэтому:

Подставляя в данное выражение формулы (1) и (2), получим:

откуда

Если обозначить то

Коэффициент b называют подвижностью ионов. Из формулы (3) следует, что

Подвижность ионов характеризует скорость движения ионов в растворе электролита при напряженности электрического поля 1 В/м. Подвижность ионов зависит от природы иона; температуры, вязкости и концентрации раствора электролита. Подвижность ионов является величиной специфичной, характерной для различных ионов, поэтому по подвижности ионов можно определить вид иона или, если имеется смесь ионов, разделить их в электрическом поле.

Чтобы определить подвижность ионов исследуемого электролита, необходимо знать скорость ионов и напряженность электрического поля Е, в котором они перемещаются. Скорость ионов при равномерном движении можно вычислить по формуле:

где x - расстояние, на которое ион перемещается за время t.

Установим зависимость между напряженностью и разностью потенциалов электрического поля. Работа ΔА, совершаемая силой F электрического поля напряженностью Е по перемещению заряда q из данной точки на расстояние вдоль линии напряженности, равна Эта работа совершается силами поля за счет убыли потенциальной энергии заряда на величину ΔWp=qΔϕ, где Δϕ - соответствующее изменение потенциала.

Приравниваем два последних равенства: откуда

где U - напряжение, - расстояние, на котором происходит падение напряжения. Подставив (5) и (6) в выражение (4), получим формулу для вычисления подвижности ионов:

Сравнивая выражение (7) с выражением получаем

Откуда определим для исследуемой жидкости

Как мы уже говорили, подвижность ионов является величиной специфичной, характерной для различных ионов. Если мы, не меняя условий опыта, повторим опыт для другой жидкости, коэффициент вязкости этой жидкости определится как

Составляя отношение формул (8) и (9), получим

Из этого соотношения следует, что если коэффициент вязкости второй жидкости известен (это даст нам основание назвать вторую жидкость эталонной), и экспериментально определить путь, пройденный за одно и то же время одинаковым ионом в каждой из этих жидкостей, то можно определить коэффициент вязкости исследуемой жидкости как

Предлагается способ определения коэффициента вязкости вещества малого объема при помощи электрофореза на лакмусовой бумаге. При этом методе определяются пути, пройденные ионом OH- на лакмусовой бумаге, смоченной исследуемой жидкостью, x1, и смоченной эталонной жидкостью, x2, известным коэффициентом динамической вязкости, между электродами, подключенными к источнику постоянного тока. Напряжение постоянного тока рациональнее взять не более допустимого по технике безопасности, т.е. не более 80 В. Нижнюю границу можно определить от 1В. В качестве источника постоянного тока следует взять аппарат для гальванизации, применяемый в клиниках для осуществления электрофореза. Фактически аппараты для гальванизации являются выпрямителями переменного тока.

Опыт показывает, что при таких напряжениях за время 2-3 минуты ион ОН- проходит путь около 2÷3 мм, что удобно для измерения штангенциркулем. Поскольку путь, проходимый ионом за время 2-3 минуты, оказывается не более 3 мм, то и длина лакмусовой бумаги может быть выбрана не более 5 см, что сильно сокращает объем исследуемой жидкости для смачивания лакмусовой бумаги.

Ион ОН- вносится в поле на простой нити, смоченной гидроксидом натрия, NaOH, помещаемой поперек лакмусовой бумаги по ее центру (рис. 3). При движении к положительно заряженному электроду, ион ОН- окрашивает бумагу в синий цвет.

Сущность заявленного технического решения и аналоги показаны на фиг. 1, фиг. 2, фиг. 3, где на фиг. 1 и фиг. 2 показаны аналоги, на фиг. 3 заявленное устройство для выполнения способа.

Для выполнения способа определения коэффициента вязкости вещества малого объема при помощи электрофореза предлагается прибор, включающий подложку под лакмусовую бумагу, два электрода, источник тока, вольтметр фиг. 3. На фиг. 3 обозначено:

1 - подложка из диэлектрика (вещество, с удельным сопротивлением

2 - лакмусовая бумага, заправленная под шайбы клемм, к которым прикручены электроды;

3 - нить, смоченная в гидроксиде натрия;

4 - след длиной x, оставляемый на лакмусовой бумаге ионом ОН- во время эксперимента;

5 - вольтметр;

- расстояние между электродами.

Подчеркиваем, что условия проведения измерений, т.е. расстояние между электродами, значения напряжения и время измерения, должны быть одинаковы как для исследования с исследуемой жидкостью, так и для исследования с эталонной жидкостью. После проведения исследования коэффициент вязкости определяем по предлагаемой формуле, формуле (11),

где:

η1 - коэффициент вязкости исследуемого вещества;

η2 - коэффициент вязкости вещества с известной вязкостью (эталонная жидкость);

x1 - расстояние на лакмусовой бумажке, пройденное ионом ОН- в исследуемом веществе (длина окрашенного следа, оставленного ионом;

x2 -- расстояние на лакмусовой бумажке, пройденное ионом ОН- в вещества с известной вязкостью (эталонная жидкость).

Расстояния x1 и x2 измеряются с помощью штангенциркуля в двух последующих друг за другом экспериментах - сначала с эталонной жидкостью, затем с исследуемой жидкостью. При этом строго выполняется требование - напряжение и время измерения строго одинаковы для обоих исследований.

Признаки формулы изобретения, «лакмусовая бумага», «электрический ток», «электрическое напряжение», «расстояние», «фиксация времени», являются существенными.

Предлагаемый способ и прибор позволяют измерять вязкость жидкостей, забор которых возможен в очень маленьких объемах, например слезная жидкость. Все признаки формулы изобретения в совокупности позволяют достигать заявленный технический результат. При этом использование только лакмусовой бумаги и нити, смоченной гидроксидом натрия, позволяют проводить исследования жидкости именно в малых объемах, что является важным и актуальным при диагностике в офтальмологии.

Способов измерения вязкости слезной жидкости, доступных для использования в поликлиниках и стационарах небольших региональных больниц, не известно.

При этом дорогостоящие импортные приборы не всегда доступны по цене. Предлагаемый способ определения коэффициента вязкости вещества малого объема и прибор с успехом могут применяться в порядке импортозамещения и по эффективности не уступать зарубежным аналогам.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 18.
26.08.2017
№217.015.d80f

Способ проведения операций при пролапсах гениталий у женщин

Изобретение относится к медицине, а именно к оперативной урологии и гинекологии. Проводят парацервикальный поперечный доступ по шейке матки к мышцам тазового дна. Укрепляют пубоцервикальную связку и фасцию имплантом, который фиксируют узловыми швами к шейке матки и в обтураторной мембране. При...
Тип: Изобретение
Номер охранного документа: 0002622609
Дата охранного документа: 16.06.2017
20.01.2018
№218.016.1298

Лечебно-профилактическая зубная паста

Изобретение относится к медицине, а именно к стоматологии, и касается лечебно-профилактических средств для ухода за зубами и полостью рта. Предлагаемая лечебно-профилактическая зубная пастасодержит, в масс.%: абразивный материал 5,0-25,0, формообразующий загуститель 0,2-2,0, консервант...
Тип: Изобретение
Номер охранного документа: 0002634347
Дата охранного документа: 25.10.2017
10.05.2018
№218.016.3f8a

Способ изготовления индивидуальной ложки для снятия оттисков с мягких тканей лица

Изобретение относится к медицине, в частности к стоматологии, и предназначено для использования при снятии оттиска с мягких тканей и дефектов лица для изготовления аппликаторов, экзопротезов лица. На лицо накладывают размягченный до температуры 40 °C базисный воск, который обжимают по рельефу....
Тип: Изобретение
Номер охранного документа: 0002648848
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.3f9b

Аппарат для дыхания

Изобретение направлено на возможности обеспечения более продолжительного насыщения кислородом крови пораженного на догоспитальном этапе путем быстрой, неоднократной замены баллончика с кислородом в аппарате. Аппарат для дыхания включает маску с обратным клапаном, соединенную трубкой с...
Тип: Изобретение
Номер охранного документа: 0002648639
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3fa3

Способ изготовления придесневого межзубного силиконового защитного шаблона при шинировании зубов адгезивными конструкциями

Изобретение относится к медицине, в частности к стоматологии, может быть использовано при шинировании подвижных зубов при заболеваниях пародонта. Снимаются зубные отложения. С оральной стороны препарируются площадки на зубах, согласно выбранной шинирующей конструкции. Изготавливается...
Тип: Изобретение
Номер охранного документа: 0002648847
Дата охранного документа: 28.03.2018
01.09.2018
№218.016.81f0

Способ хирургического лечения проксимальной гипоспадии

Изобретение относится к медицине, а именно к урологии, при лечении проксимальных гипоспадий у мальчиков. Способ включает циркумцизионный разрез с выделением нативного меатуса и уретральной площадки на стволе полового члена. Отделяют кожу полового члена вместе с прилежащей к ней мясистой...
Тип: Изобретение
Номер охранного документа: 0002665545
Дата охранного документа: 30.08.2018
08.11.2018
№218.016.9b10

Способ неинвазивной оценки среднего уровня нейротрофического фактора мозга (bdnf) в плазме крови на основе показателей микроэлементного анализа волос

Изобретение относится к медицине, в частности к неврологии, и может быть использовано при лабораторной диагностике в качестве способа неинвазивной оценки среднего уровня нейротрофического фактора мозга (BDNF) в плазме крови на основе показателей микроэлементного анализа волос. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002671636
Дата охранного документа: 06.11.2018
17.07.2019
№219.017.b59c

Способ контролируемого забора влаги передней камеры глаза

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для контролируемого забора влаги передней камеры глаза. Осуществляют парацентезные рассечения роговицы, забор влаги с последующим ее восполнением физиологическим раствором. Парацентезные рассечения роговицы...
Тип: Изобретение
Номер охранного документа: 0002694515
Дата охранного документа: 15.07.2019
16.08.2019
№219.017.c023

Способ синтеза липосомальной формы тироксина

Изобретение относится к медицине, а именно к ее разделу эндокринология, и к фармации, а именно к созданию субстанций для лекарственных препаратов содержащих тиреоидные гормоны. Техническим результатом предлагаемого изобретения является повышение эффективности лечения гипотиреоза за счет...
Тип: Изобретение
Номер охранного документа: 0002697390
Дата охранного документа: 14.08.2019
05.09.2019
№219.017.c6ea

Способ изготовления промежуточной части адгезивных мостовидных протезов с использованием индивидуальных силиконовых шаблонов (прямой метод)

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для использования при лечении пациентов с включенными дефектами зубных рядов. Осуществляют выбор армирующей конструкции и подготовку опорных зубов, притачивание стандартного искусственного зуба,...
Тип: Изобретение
Номер охранного документа: 0002698998
Дата охранного документа: 02.09.2019
Показаны записи 1-5 из 5.
27.02.2015
№216.013.2d31

Способ профилактики близорукости

Изобретение относится к области медицины, а именно к офтальмологии. Повышают аккомодационную способность глаза. Для этого осуществляют активацию парасимпатического звена вегетативной нервной системы путем выработки у пациента диафрагмального типа дыхания при заданном соотношении вдохов и...
Тип: Изобретение
Номер охранного документа: 0002543037
Дата охранного документа: 27.02.2015
26.08.2017
№217.015.e323

Способ наложения швов на глазные мышцы

Изобретение может быть использовано в медицине при проведении хирургических операций на глазном яблоке с целью исправления косоглазия, нистагма. Осуществляют выделение мышцы, фиксацию мышцы на крючке, прошивание и фиксацию мышцы к склере. При этом прошивание производят путем наложения стежков...
Тип: Изобретение
Номер охранного документа: 0002626142
Дата охранного документа: 21.07.2017
17.07.2019
№219.017.b59c

Способ контролируемого забора влаги передней камеры глаза

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для контролируемого забора влаги передней камеры глаза. Осуществляют парацентезные рассечения роговицы, забор влаги с последующим ее восполнением физиологическим раствором. Парацентезные рассечения роговицы...
Тип: Изобретение
Номер охранного документа: 0002694515
Дата охранного документа: 15.07.2019
15.10.2019
№219.017.d5d2

Способ определения провоспалительных и противовоспалительных интерлейкинов во влаге передней камеры глаза у пациентов с пресинильной катарактой глаза для диагностики постоперационных осложнений

Изобретение относится к области медицины, а именно к офтальмологии, и предназначено для определения риска развития постоперационных осложнений при хирургическом лечении пресинильной катаракты глаза. Способ определения риска развития постоперационных осложнений при хирургическом лечении...
Тип: Изобретение
Номер охранного документа: 0002702735
Дата охранного документа: 10.10.2019
21.04.2023
№223.018.4f1d

Аппликатор глазной

Изобретение относится к медицине, а именно к офтальмологии. Аппликатор глазной включает кольцо из полимерного материала. Внутренний диаметр кольца составляет 10 мм, ширина 3 мм. По внешней окружности кольца сделаны четыре сквозные насечки длиной менее 3 мм, расположенные под углом к линии...
Тип: Изобретение
Номер охранного документа: 0002794023
Дата охранного документа: 11.04.2023
+ добавить свой РИД