×
02.10.2019
219.017.cf45

Результат интеллектуальной деятельности: МНОГОКАНАЛЬНЫЙ АСПИРАТОР И АСПИРАЦИОННАЯ СИСТЕМА ТРАНСПОРТНОГО СРЕДСТВА (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002700305
Дата охранного документа
16.09.2019
Аннотация: Изобретение относится к многоканальному аспиратору, который может быть использован в автотранспортных областях для создания и поддержания разрежения. В одном или более вариантах осуществления аспиратор транспортного средства содержит корпус с входной частью и выходной частью и рукавную часть, соединенную с корпусом в месте между входной частью и выходной частью, в котором поперечный разрез входной части содержит внутреннюю стенку и наружную стенку, окружающую внутреннюю стенку. Наружная стенка может быть пространственно отделена от внутренней стенки вдоль наружного периметра внутренней стенки. Внутренняя и наружная стенки могут быть концентрическими друг для друга. Изобретение позволяет улучшить эффективность аспиратора. 2 н. и 6 з.п. ф-лы, 5 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Раскрытая идея изобретения главным образом относится к многоканальному аспиратору, который может быть использован в автотранспортных областях применения для создания и поддержания разрежения.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Определенные транспортные средства могут использовать разряжение впускного коллектора для обеспечения усиления тормоза или усилителя. В соответствии с этими конструкциями для создания и/или поддержания уровня разрежения, необходимого для усиления тормоза, может быть использован аспиратор. Некоторые существующие аспираторы имеют ограничения, например, требуют отдельный байпас с дополнительными клапанными средствами управления, проектирование и использование которых является трудоемким и дорогостоящим решением.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В одном или более вариантах осуществления аспиратор транспортного средства содержит корпус с входной частью и выходной частью и рукавную часть, соединенную с корпусом в месте между входной частью и выходной частью, в котором поперечный разрез входной части содержит внутреннюю стенку и наружную стенку, окружающую внутреннюю стенку. Наружная стенка может быть пространственно отделена от внутренней стенки вдоль наружного периметра внутренней стенки.

Внутренняя и наружная стенки могут определять, соответственно, внутренний и наружный каналы вдоль первой продольной оси корпуса. Рукавная часть может содержать рукавный канал вдоль второй продольной оси рукавной части.

Два канала, выбранные из внутреннего, наружного и рукавного каналов, могут быть выполнены с возможностью сообщения с первым источником текучей среды, а другой из них выполнен с возможностью сообщения со вторым источником текучей среды, отличным от первого источника текучей среды. В частности, внутренний и рукавный каналы могут быть выполнены с возможностью сообщения с первым источником текучей среды, а наружный канал - выполнен с возможностью сообщения со вторым источником текучей среды.

Внутренняя и наружная стенки могут иметь разные формы поперечного разреза.

Поперечный разрез входной части также может содержать внешнюю стенку, окружающую наружную стенку, внешняя стенка и наружная стенка вместе определяют внешний проход.

Аспиратор может также содержать клапан, выполненный с возможностью сообщения с любым из внутреннего, наружного и рукавного каналов.

Один или несколько преимущественных признаков, раскрытых в настоящем документе, будут понятны из нижеследующего раскрытия одного или нескольких вариантов осуществления и на основе прилагаемых графических материалов.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Для более полного понимания настоящего изобретения следует обратиться к одному или нескольким вариантам осуществления, более подробно проиллюстрированным в прилагаемых графических материалах и раскрытых ниже, где:

на фиг. 1 проиллюстрирован аспиратор, который может быть использован в соединении с вакуумным резервуаром и впускным коллектором двигателя согласно одному или нескольким вариантам осуществления;

на фиг. 2 проиллюстрирован в увеличенном масштабе аспиратор, показанный на фиг. 1;

на фиг. 3 проиллюстрирован поперечный разрез аспиратора, показанного на фиг. 1;

на фиг. 4A проиллюстрирован альтернативный вид аспиратора, показанного на фиг. 1;

на фиг. 4B проиллюстрирован поперечный разрез аспиратора, показанного на фиг. 4A; и

на фиг. 5 показаны эксплуатационные данные пробного аспиратора согласно одному или более вариантам осуществления.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

На фигурах одинаковые номера позиций обозначают одинаковые элементы. В нижеследующем раскрытии разные рабочие параметры и элементы раскрыты в отношении разных разработанных вариантов осуществления. Конкретные параметры и элементы приведены исключительно в качестве примеров, и не несут какого-либо ограничительного смысла.

Раскрытая идея изобретения относится к аспирационной системе, которая может быть расположена между вакуумным резервуаром и впускным коллектором двигателя для извлечения нежелательного воздуха из вакуумного резервуара. Идея изобретения, реализуемая в одном или более вариантах осуществления, позволяет достичь преимуществ и обеспечить экономически эффективное и технически простое решение путем обеспечения отдельного дополнительного канала(ов) текучей среды внутри корпуса аспиратора и исключения необходимости внешнего по отношению к корпусу байпасного канала(ов) текучей среды. Кроме того, так как в данном случае текучая среда из разных каналов текучей среды может быть смешана в корпусе сравнительно раньше и более тщательно вдоль продольной оси корпуса, то можно ожидать улучшения рабочих характеристик системы.

В одном или нескольких вариантах осуществления, как показано на фиг. 1, аспирационная система, целиком обозначенная номером 102, содержит аспиратор 100, расположенный между вакуумным резервуаром 104 и впускным коллектором 108 двигателя. Аспирационная система 102 также содержит источник 106 воздуха, расположенный выше по потоку от аспиратора 100, для создания потока текучей среды из вакуумного резервуара 104 через аспиратор 100. Два входа могут быть подсоединены к вакуумному резервуару 104, как показано на фиг. 1, альтернативно, один вход подсоединяют к вакуумному резервуару 104, а другой - к системе принудительной вентиляции картера (ПВК).

На фиг. 1, а также на фиг. 2, на которой показан детализированный вид аспиратора 100, показанного на фиг. 1, аспиратор 100 содержит корпус 110 с входной частью 114 и выходной частью 116. Корпус 110 содержит внутренний канал 124 и наружный канал 122, каждый из которых проходит вдоль продольной оси «L» корпуса 110 для выведения потока текучей среды. Ниже по потоку от входной части 114 расположен рукавный канал 126, проходящий через рукавную часть 112, для введения потока другой текучей среды. В определенных вариантах осуществления потоки текучей среды, проходящие через каналы 124 и 126, могут быть названы вытяжными потоками, а поток текучей среды, проходящий через канал 122, может быть назван движущим потоком. Потоки текучей среды из каналов 122, 124 и 126 смешиваются в смесителе 128 аспиратора 100 для получения смешенного потока текучей среды, перемещаемого вниз по потоку, например, во впускной коллектор 108 двигателя.

На фиг. 3 проиллюстрирован поперечный разрез входной части 114 аспиратора 100. Внутренний канал 124 определен внутренней стенкой 132. Наружный канал 122 определен наружной стенкой 130 и внутренней стенкой 132. Как показано на фиг. 3, наружная стенка 130 пространственно отделена от внутренней стенки 132 вдоль наружного периметра 132b внутренней стенки 132. Для полного сохранения потока текучей среды, по меньшей мере один из внутреннего и наружного периметров 132a, 132b внутренней стенки 132 представляет собой замкнутый контур. По той же причине по меньшей мере один из внутреннего и наружного периметров 130a, 130b наружной стенки 130 также представляет собой замкнутый контур.

Чтобы удовлетворить определенным требованиям по динамике потока, опционально внутренний канал 124 разделяют на любое подходящее количество отсеков любой подходящей формы. По той же причине опционально наружный канал 122 разделяют на любое подходящее количество отсеков любой подходящей формы.

Как показано на фиг. 1, потоком, поступающим во входную часть 114 корпуса 110, а также во вход 118 рукавной части 112 независимо друг от друга может управлять клапан. Например, потоком из вакуумного резервуара 104 через внутренний канал 124 может управлять клапан 150. Потоком из вакуумного резервуара 104 через рукавный канал 126 может управлять клапан 154. Потоком от источника 106 воздуха через наружный канал 122 может управлять клапан 152.

Необязательно, чтобы внутренний канал 124 и рукавный канал 126 были выполнены с возможностью сообщения по текучей среде с вакуумным резервуаром 104, а наружный канал 122 - с источником 106 воздуха. Предпочтительнее, каждый из каналов 122, 124 и 126 может быть установлен с возможностью введения любого из потоков текучей среды, поскольку поток текучей среды от каждого источника 104, 106 впускают по меньшей мере через один из каналов 122, 124, 126. В определенных вариантах осуществления канал 122 может быть использован как источник воздуха, а каналы 124 и 126 - как источник разряжения. Опционально каждый из каналов 122, 124 и 126 может быть соединен с источником воздуха, обеспечивающим движущую силу, или с источником разряжения.

На фиг. 1 вакуумный резервуар 104 представлен одним из примеров конструкций первого источника текучей среды, который может находиться в соединении с аспиратором 100 и обеспечивать подачу в него текучей среды. Другие примеры конструкций первого источника текучей среды включают в себя картер. По той же причине источник 106 воздуха представлен одним из примеров конструкций второго источника текучей среды, который может находиться в соединении с аспиратором 100 и обеспечивать подачу в него текучей среды. Другие примеры конструкций второго источника текучей среды включают в себя атмосферный или сжатый воздух ниже по потоку от компрессора.

На фиг. 2 и на фиг. 3 внутренний канал 124 и наружный канал 122 опционально имеют одинаковые или разные поперечные формы. Неограничивающие примеры форм поперечных сечений содержат круг, овал, квадрат, прямоугольник, треугольник и другие геометрические формы. Если поперечные формы не одинаковы, внутренний канал 124 может быть в форме круга, а наружный канал 122 может быть в форме овала. Не желая ограничиваться какой-либо конкретной теорией, считают, что наружный канал 122, определенный формами наружной и внутренней стенок 130, 132, может оказывать влияние на динамику потока текучей среды, проходящего через него, а также схему слияния всех потоков текучей среды, сходящихся друг с другом. Соответственно, возможность обеспечения различных поперечных форм каналов в корпусе 110 обеспечивает больше возможностей для организации различных потоков и эффективной работы аспиратора 100.

На фиг. 3 внутренняя и наружная стенки 132, 130 могут быть концентрическими друг другу относительно центральной точки «A», независимо от того, имеют ли стенки 132, 130 одинаковые геометрические формы, или нет. Неограничивающие примеры парных конструкций содержат концентрические круги, концентрические круг и квадрат, концентрические круг и треугольник, концентрические прямоугольники или квадраты, и концентрические треугольники.

Вдобавок, отношение внутренней площади, определенной внутренней стенкой, и наружной площади, определенной внутренней и наружной стенками, может иметь любые подходящие значения, и в некоторых вариантах осуществление составляет от 1:1,5 до 1:2,0.

На фиг. 2 и на фиг. 3 поток, приходящий через рукавный канал 126 может по меньшей мере частично сначала ударяться о наружную поверхность 130b наружной стенки 130. Все потоки из каналов 122, 124 и 126 могут вступать в контакт друг с другом в горловой области 128, расположенной ниже по потоку от рукавной части 112, и смешиваться здесь и далее. Не желая ограничиваться какой-либо конкретной теорией, считают, что обеспечение непосредственного контакта потока с наружной поверхностью 130b позволяет эффективно изменять направление потока, например, с перпендикулярного на горизонтальное или параллельное направление, что, соответственно, увеличивает скорость вытяжного потока через каналы 124, 126. Вдобавок, путем соединения или смешения трех потоков в горловой области 128 можно создать относительно низкое статическое давление в этой зоне и, следовательно, относительно максимизировать поток текучей среды из каналов 124 и 126.

На фиг. 4A проиллюстрирована схема потока в аспираторе с вариантом аспиратора, показанным на фиг. 3, при этом на фиг. 4B проиллюстрирован поперечный разрез входной части 414 аспиратора 100. Поперечный разрез входной части 414, согласно варианту осуществления, дополнительно содержит внешнюю стенку 434, внешнюю относительно внутренней и наружной стенок 132, 130. Наружная и внешняя стенки 130, 434 вместе определяют внешний канал 426 вдоль продольной оси «L» корпуса 110. Два отдельных потока текучей среды вводят через внутренний и наружный каналы 124, 122, определенные внутренней стенкой 132 и внутренней и наружной стенками 132, 130 соответственно. Другой поток текучей среды вводят через рукавный канал 126. В этой конфигурации рукавная часть 112 может быть подсоединена к корпусу 110 через внешнюю стенку 434 так, чтобы обеспечить сообщение элементов по текучей среде. Поток через рукавный канал 126 проходит через внешний канал 426 и затем все три потока текучей среды приходят в контакт друг с другом в месте 402. Даже если три потока сходятся приблизительно в одной области, например, горловой области 428, относительные места могут варьироваться и определяться вычислительным гидрогазодинамическим (ВГД) моделированием. Один из возможных путей достижения этого является максимизация скорости потока из тормозного бачка, при этом поток из тормозного бачка необходимо вводить в место с максимально низким статическим давлением.

На фиг. 5 показана функция массового расхода потока от давления разрежения, измеренного в пробном аспираторе, например, аспираторе 100, показанном на фиг. 1. В этом примере используют РГД моделирование, где оба потоковых канала 124 и 126 подсоединены к тормозному вакуумному бачку для проведения вытяжных потоков, а канал 122 открыт для подачи атмосферного воздуха с давлением около 100 кПа для проведения движущего потока. Давление в тормозном вакуумном бачке поддерживают около 85 кПа, в то время как массовые расходы потока рассчитывают для всех трех потоковых входов, чтобы выходное давление (в коллекторе) опустилось с 90 кПа до 60 кПа (давление разряжения в коллекторе увеличивается с 10 до 40 кПа, что показано на горизонтальной оси на фиг. 5). Для сравнения характеристик устраивают такой же аспиратор, внутренний канал 124 которого устанавливают снаружи корпуса 110.

Численные значения сравнительных характеристик показаны на фиг. 5, где буквой «A» отмечены результаты сравнения, а буквой «B» - результаты для аспиратора изображенной на фиг. 1 конструкции. Как можно видеть на фиг. 5, в то время как движущий поток для каждой конструкции остается приблизительно одинаковым, скорость вытяжного потока ощутимо меняется при сравнении двух конструкций. В частности, относительно большую скорость вытяжного потока наблюдают при конструкции согласно фиг. 1 или ее вариантах, обсуждаемых в настоящем документе, по сравнению с контрольным вариантом. Улучшение вытяжного потока, в частности, наблюдают при давлении разрежения около 10-23 кПа в данном примере. Это улучшение делает возможным исключение байпаса, соединенного с дорогостоящим управляющим клапаном, на холостом ходу двигателя, когда давление разряжения относительно низкое, например, в интервале 10-23 кПа, как показано на фиг. 5.

В одном или нескольких вариантах осуществления настоящее изобретение, как изложено в настоящем документе, позволяет решить определенные проблемы, связанные с эффективностью аспирации. Однако специалисту в данной области техники будет понятно из приведенных материалов, что возможны различные изменения, модификации и варианты без отклонения от идеи и объема настоящего изобретения, определенного нижеследующей формулой изобретения.

Источник поступления информации: Роспатент

Показаны записи 401-410 из 556.
27.12.2019
№219.017.f392

Способ (варианты) впрыска воды в двигатель

Изобретение может быть использовано в двигателестроении. Представлены способы и системы для координирования использования воды с регулированием зажигания на основе их воздействия на отношение крутящих моментов двигателя. Воду впрыскивают на основе отношения крутящих моментов при текущем моменте...
Тип: Изобретение
Номер охранного документа: 0002710446
Дата охранного документа: 26.12.2019
27.12.2019
№219.017.f399

Способ и система регенерации фильтра для улавливания частиц (варианты)

Изобретение относится к двигателю с выхлопной системой, содержащей сажевый фильтр. Раскрыты система и способы для координации регенерации бензинового сажевого фильтра с периодом, в течение которого мощность двигателя падает ниже заранее установленного порогового значения нагрузки для...
Тип: Изобретение
Номер охранного документа: 0002710451
Дата охранного документа: 26.12.2019
27.12.2019
№219.017.f3a4

Система рециркуляции отработавших газов

Изобретение относится к машиностроению. Система рециркуляции отработавших газов для двигателя (2) автомобильного транспортного средства (1) содержит канал рециркуляции отработавших газов, соединяющий отверстие для выпуска отработавших газов с отверстием (9) для впуска воздуха двигателя (2)....
Тип: Изобретение
Номер охранного документа: 0002710445
Дата охранного документа: 26.12.2019
27.12.2019
№219.017.f3a5

Способ управления системой рециркуляции отработавших газов (варианты)

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ для двигателя. При выбранных условиях, выполняют непосредственный впрыск жидкости из бака (161) в охладитель (158) рециркуляции отработавших газов (РОГ). Непосредственный впрыск жидкости в охладитель РОГ основан на...
Тип: Изобретение
Номер охранного документа: 0002710454
Дата охранного документа: 26.12.2019
31.12.2020
№219.017.f486

Способ (варианты) и система для регенерации бензинового сажевого фильтра

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ для двигателя содержит следующие этапы. Направление потока отработавших газов из первого цилиндра (248A) через первый сажевый фильтр (264A) в первом отводном канале (262A). Направление потока отработавших газов из...
Тип: Изобретение
Номер охранного документа: 0002710639
Дата охранного документа: 30.12.2019
31.12.2020
№219.017.f489

Способ регулирования открытия заслонки решетки радиатора, способ управления устройством регулирования потока воздуха в передней части двигателя (варианты)

Изобретение относится к системе охлаждения двигателя автомобиля. Предложены способы и системы регулирования открытия заслонки решетки радиатора на основе расчетной величины разжижения масла топливом. В одном примере способ может предусматривать регулирование открытия заслонки решетки радиатора...
Тип: Изобретение
Номер охранного документа: 0002710637
Дата охранного документа: 30.12.2019
31.12.2020
№219.017.f4a2

Способ адаптивного управления очисткой ловушки обедненных окислов азота

Настоящее изобретение относится к автомобильному транспортному средству, содержащему систему снижения выбросов, которая содержит ловушку обедненных окислов азота, и, более конкретно, к способу адаптации стратегии, используемой для периодической очистки ловушки обедненных окислов азота от...
Тип: Изобретение
Номер охранного документа: 0002710658
Дата охранного документа: 30.12.2019
17.01.2020
№220.017.f60e

Способ (варианты) и система управления скоростью транспортного средства

Изобретение относится к способам и системам для управления скоростью транспортного средства. Способ управления скоростью транспортного средства содержит этапы, на которых в качестве реакции на электрический сигнал задают предел скорости транспортного средства равным первому пороговому значению....
Тип: Изобретение
Номер охранного документа: 0002711209
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f61e

Способ (варианты) регулирования эжектирующего потока через вытяжное устройство и гибридное транспортное средство

Изобретение относится к гибридным транспортным средствам. В способе регулирования эжектирующего потока двигателя гибридного транспортного средства после команды на глушение двигателя открывают регулирующий клапан вытяжного устройства, когда частота вращения двигателя находится между первым и...
Тип: Изобретение
Номер охранного документа: 0002711254
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f626

Способ регулирования работы привода (варианты)

Способ эксплуатации привода по одному из вариантов изобретения содержит передачу контроллеру транспортного средства рабочих областей привода, для которых в базе данных сети, дистанционной относительно транспортного средства, существуют неустановившиеся параметры привода; регулирование...
Тип: Изобретение
Номер охранного документа: 0002711232
Дата охранного документа: 15.01.2020
Показаны записи 51-52 из 52.
29.05.2020
№220.018.2195

Способ определения содержания твердых частиц в отработавших газах (варианты)

Представлены способы и системы для датчика твердых частиц, расположенного ниже по потоку от дизельного сажевого фильтра в системе выпуска отработавших газов. В одном из примеров датчик твердых частиц может содержать цилиндрический блок с круглой пластиной и расположенным в ней множеством...
Тип: Изобретение
Номер охранного документа: 0002722143
Дата охранного документа: 27.05.2020
23.07.2020
№220.018.3576

Система (варианты) и способ для обнаружения твердых частиц

Изобретение может быть использовано в выпускных системах двигателей внутреннего сгорания. Система для обнаружения твердых частиц содержит набор полых дисков (260), возрастающих в размере в направлении вдоль вертикальной оси (299), электроды (220), (222) и трубку (250) с впускным отверстием...
Тип: Изобретение
Номер охранного документа: 0002727120
Дата охранного документа: 20.07.2020
+ добавить свой РИД