×
02.10.2019
219.017.cec1

Результат интеллектуальной деятельности: Лабораторная установка для исследований анодных процессов алюминиевого электролизера

Вид РИД

Изобретение

Аннотация: Изобретение относится к лабораторной установке для исследований анодных процессов алюминиевого электролизера. Установка содержит шахтную электропечь, две электролизные ячейки с исследуемым электролитом, помещенные в стальную реторту с графитовым порошком, представляющие собой графитовые тигли с размещенными на дне стальными пластинами, погруженными в электролит с исследуемым анодом, термопарой и алюминиевым электродом сравнения, источник постоянного тока, амперметры и вольтметры для измерения силы тока и напряжения в каждой ячейке, дополнительную ячейку, установленную в реторте и содержащую эталонный электролит и эталонный анод, при этом эталонный электролит состоит из криолитоглиноземного расплава с криолитовым отношением 2,1-3,0, концентрацией фторида кальция 0,0…8,0 мас.%, глинозема - 0,5-12,0 мас.% остальное - криолит, а исследуемый электролит дополнительно содержит загрязнитель. Обеспечивается расширение технологических возможностей установки изучения анодных процессов и изучения в лабораторных условиях причин и механизмов нарушений анодных процессов алюминиевых электролизеров. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области исследований технологических процессов в гетерогенных средах, в частности, к производству алюминия электролитическим способом, и может быть использовано для изучения в лабораторных условиях причин и механизмов нарушений анодных процессов алюминиевых электролизеров.

Известно у стройство для определения токораспределения по анодам алюминиевого электролизера, содержащее датчики измерения магнитного поля, соединенные с вычислительным блоком кабелем и/или беспроводной связью, отличающееся тем, что упомянутые датчики измерения магнитного поля установлены внутри анодных штанг в одной плоскости, перпендикулярной оси анодной штанги, и соединены между собой проводами. (RU 2634817, 28.06.2016, опубл. 03.11.2017 Бюл. №31)

Недостатком устройства является ограниченная область его применения. Устройство предназначено для измерения токораспределения на действующих электролизерах, которые работают в узком диапазоне составов электролита, температур и плотностей тока и не позволяет исследовать влияние названных параметров на равномерность распределения тока.

Известна установка (в статье Henrik , Thor A. Aarhaug, Espen Sandnes, Ole S. Kjos, et al. Anode effect initiation during aluminium electrolysis in a two compartment laboratory cell // Light metals. - 2018. - pp. 551-556) для исследования анодных процессов алюминиевого электролизера, в частности, причин возникновения анодных эффектов, возникающих в криолитоглиноземных расплавах алюминиевых электролизеров путем регулирования концентрации глинозема и плотности тока в разделенной на две ячейки реторте, имеющей общий катод и два изолированных друг от друга анода, удерживаемые в расплаве полыми алундовыми трубками-анододержателями, внутри которых размещены термопары и через которые образующиеся анодные газы выводятся из-под подошвы анода. Данное устройство взято за прототип.

Недостаток прототипа, заключается в ограниченных технологических возможностях, предусматривающих только провоцирование анодного эффекта с дальнейшим изучением и анализом причин его возникновения.

Целью заявляемого изобретения является расширение технологических возможностей установки в т.ч. изучения влияния температуры, удельной скорости газовыделения, межэлектродного расстояния, состава электролита, содержания угольной пены, свойств анода на равномерность распределения тока, электродный потенциал и на скорость роста конуса.

Поставленная цель достигается тем, что лабораторная установка для исследований анодных процессов алюминиевого электролизера, содержащая шахтную электропечь, две электролизные ячейки с исследуемым электролитом, помещенные в стальную реторту с графитовым порошком, представляющие собой графитовые тигли с размещенными на дне стальными пластинами, погруженными в электролит с исследуемым анодом, термопарой и алюминиевым электродом сравнения, а также источник постоянного тока, амперметры и вольтметры, измеряющие силу тока и напряжение в каждой ячейке, согласно изобретению, в реторте, установлена дополнительная ячейка, содержащая эталонный электролит и эталонный анод, при этом, эталонный электролит состоит из криолитоглиноземного расплава с криолитовым отношением 2,1-3,0, концентрацией фторида кальция 0,0…8,0 масс. %, глинозема - 0,5-12,0 масс. % остальное - криолит, а исследуемый электролит дополнительно содержит загрязнитель.

В качестве загрязнителя используется например, угольная пена в количестве от 0,1 до 8 масс. %.,

Дополнительная ячейка и исследуемая подключены к амперметру, вольтметру, к компьютеру, гальваностату.

Исследуемый анод в каждой ячейке помещен в керамическую трубку и закреплен в графитовом тигле над стальной пластиной на расстоянии до 50 мм, а отношение диаметра анода d к диаметру D тигля соответствует соотношению: d:D=1:1,5÷2,5.

Внутри каждого эталонного и исследуемого анода помещена термопара.

Целесообразность размещения в реторте трех ячеек обосновывается тем, что при этом установка максимально приближается к реальному алюминиевому электролизу, в электролите которого наблюдаются неровные концентрации растворенного глинозема, неравномерное содержание угольной пены, изменчивое распределение тока среди анодов. Уменьшение количества ячеек менее трех не позволит оценить одновременное влияние перечисленных факторов на процесс электролиза. Увеличение количества ячеек больше трех сделает установку громоздкой и усложнит оценку влияния каждого из перечисленных факторов на процесс электролиза.

Стальная пластина на дне ячейки хорошо смачивается алюминием и обеспечивает более ровную, в сравнении с прототипом, поверхность зеркала металла и более равномерное распределение тока в электролите.

Заключение анода в керамическую трубку и защита внутренней стенки ячейки керамической трубкой позволяет избежать возникновения в ячейке горизонтальных токов, которые приводят к выделению на стенках ячейки алюминия, деполяризующего анод и изменяющего распределение тока. Кроме того, наличие горизонтальных токов нарушает подобие ячейки с промышленным электролизером.

Засыпка измельченного графита исключает доступ воздуха в стальную реторту и окисление наружных поверхностей тиглей при их нагреве до температуры электролиза.

Короткое замыкание анода со стальной пластиной (зазор 0 мм) осуществляется для определения контактного сопротивления и падения напряжения в электронных проводниках цепи, а также для оценки влияния на распределение тока предыстории ячейки, которая может выражаться, например, в определении равномерности токораспределения между ячейками после того, как в одной ячейке анод был некоторое время замкнут на катод и влияния времени замыкания на равномерность токораспределения. Такая оценка позволяет идентифицировать изменения, произошедшие с анодом во время короткого замыкания: изменение поверхностного натяжения между электролитом и анодом, структурные преобразования в результате локального повышения температуры в месте замыкания.

Максимальный зазор между анодом и стальной пластиной 50 мм соответствует максимальному межэлектродному пространству современных высокоамперных электролизеров, что позволяет приблизить условия опыта к промышленным условиям.

Отношение диаметров анода к диаметру графитового тигля обосновывается следующим. В созданной установке диаметр D графитового тигля равен 70 мм, диаметр анода d равен 50 мм, электрода сравнения - 8 мм. Уменьшение отношения диаметра анода к диаметру тигля d:D<1,5 создаст помехи для установки электрода сравнения. Увеличение отношения диаметра анода к диаметру тигля d:D>2,5 нарушит условия искусственного образования конуса на аноде малого диаметра.

Диапазон криолитового отношения электролита КО=2,1…3,0 позволяет проводить опыты с любым его составом, используемом в промышленных условиях, определять влияние КО на температуру электролиза и равномерность токораспределения.

Диапазон содержания CaF2 от 0 до 8,0% масс. позволяет исследовать различные составы электролитов, используемых в промышленных электролизерах и оценивать влияние содержания CaF2 на равномерность токораспределения.

Диапазон содержания Al2O3 от 0,5 до 12,0% масс. обосновывается следующим. Диапазон от 0,5 до 1,8% масс. позволяет вести электролиз в режиме «голодание» и провоцировать в ячейке, таким образом, возникновение анодного эффекта. Диапазон содержания Al2O3 от 8,0 до 12,0% масс. позволяет вести электролиз в режиме «перепитка» и провоцировать, таким образом, образование осадка на подине тигля и рост конуса на подошве анода, а также оценивать изменение сопротивления электрической цепи ячейки и электролита при наличии на подине осадка.

Также провоцирование роста конусов и анодного эффекта может осуществляться повышением вязкости электролита и его частичной кристаллизацией путем уменьшения величины напряжения тока, питающего ячейку.

Содержание в электролите угольной пены в диапазоне от 0,1 до 8 масс. % позволяет моделировать в ячейке ситуацию, приближенную к состоянию электролита промышленных электролизеров, который оценивается следующим образом: при содержании углерода в электролите от 0,1 до 0,5% масс. - высокая степень чистоты электролита, от 0,5 до 5,0% масс. - электролит загрязненный, от 5,0 до 8,0% масс. и выше - электролит сильно загрязнен электролитом и электролизер работает с отступлением от регламентируемых технологических показателей: высокая температура перегрева электролита, повышенный расход фтористых солей и электроэнергии, рост конусов на подошве анода.

Заявляемая установка поясняется графически. На фиг. 1 показана общий вид установки; на фиг. 2 - графитовый тигель, играющий роль электролизной ячейки; где: 1 - шахтная электропечь; 2 - стальная реторта; 3 - теплоизолированная крышка графитового тигля; 4 - источник постоянного тока; 5 - измерительные шунты; 6 - потенциостат/гальваностат; 7 - мультипроцессорный контроллер; 8 - персональный компьютер; 9 - графитовый тигель; 10 - стальная пластина; 11 - катодная керамическая трубка; 12 - угольный анод; 13 - анодная керамическая трубка; 14 - термопара; 15 - электрод сравнения; 16 - стальной токоподвод; 17 - слой измельченного графита.

Заявляемая установка работает следующим образом. В стальную реторту 2 помещаются графитовые тигли 9 и пространство между ними, для защиты тиглей от сгорания, засыпается слоем измельченного графита 17. В один из тиглей засыпается эталонный материал - смесь глинозема и фтористых солей, в два других - смесь глинозема и фтористых солей с добавкой загрязнителя - угольной пены.

Анод 12 помещается в керамическую трубку 13 и закрепляется в графитовом тигле над стальной пластиной 10 на заданном расстоянии от 0 до 50 мм, обусловленном условиями опыта. Например, установка позволяет получать зависимости равномерности токораспределения от температуры, межэлектродного расстояния, концентрации глинозема, фторида кальция, КО, содержания пены. При этом один из этих параметров задается переменным (например, межэлектродное расстояние), который изменяется в течение опыта или серии опытов, при постоянстве остальных параметров. При провоцировании образования конусов электрод сравнения 15 располагается в графитовом тигле, термопара 14 - в отверстии внутри анода и служит для регистрации его температуры в процессе опыта. В случае, когда необходимо контролировать температуру электролита при провоцировании анодного эффекта и исследовать токораспределение, термопара размещается в расплаве рядом с анодом. Нагрев материала в тиглях до температуры электролиза (950÷970°С) и перехода его в жидкое состояние осуществляется с помощью шахтной электропечи 1. Установка может работать в потенциостатическом (при постоянном напряжении) или в гальваностатическом (при постоянной силе тока) режимах, что позволяет задавать различные кинетические и термодинамические параметры процесса электролиза. Электрохимическая реакция разложения глинозема в параллельно соединенных тиглях осуществляется за счет электрической работы, совершаемой источником тока 4. Поставщиком электронов в каждом тигле служит помещенный в него алюминий, смачивающий стальную пластину 10, а акцептором электронов - угольный анод 12, температура которого измеряется посредством термопар 14. Анодным токоподводом служит штанга 16. Сила тока в каждой параллельной цепи измеряется шунтом 5. Потенциал анода относительно электрода сравнения 15 измеряется потенциостатом/гальваностатом 6, подключенным к персональному компьютеру 8. Передача данных от термопар и шунтов на персональный компьютер осуществляется через микропроцессорный контроллер 7, служащий преобразователем сигналов. Для исключения горизонтальных токов между анодом и катодом предусмотрены керамические трубки 11 и 13, выполняющие роль изолятора. После завершения опыта отключаются все измерительные приборы, источник постоянного тока и электропечь. Анод и электрод сравнения извлекаются из расплавленного материала. Ячейки самопроизвольно остужаются до комнатной температуры, после чего извлекаются из установки и разрезаются для измерения массы алюминия, состава электролита в областях, обнаружения на подошве анода конуса.

Источник поступления информации: Роспатент

Показаны записи 121-130 из 324.
10.05.2018
№218.016.45d4

Способ подготовки обожженных анодов для электролиза алюминия

Изобретение относится к способу подготовки обожженных анодов для электролиза алюминия. Способ включает нагрев анода перед помещением его в расплав электролита. Нагрев выполняют в герметичном объеме посредством тока высокой частоты 20-120 МГц до температуры поверхности анода 350-800°С....
Тип: Изобретение
Номер охранного документа: 0002650359
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.4721

Способ определения температурной области работоспособности смазочных материалов

Изобретение относится к технологии оценки качества жидких смазочных материалов. Предложен способ определения температурной области работоспособности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с перемешиванием, постоянной массы, минимум, при...
Тип: Изобретение
Номер охранного документа: 0002650602
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.489a

Способ отбора пробы жидкого металла

Изобретение относится к металлургическому производству, в частности к производству алюминия, и может быть использовано при подготовке проб алюминия и его сплавов для анализа на содержание водорода. Производят погружение изложницы в расплав. Заполняют изложницу жидким металлом и проводят далее...
Тип: Изобретение
Номер охранного документа: 0002651031
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.48e4

Устройство для обогрева почвы

Изобретение относится к средствам обогрева почвы и может использоваться в промышленных и индивидуальных теплицах для выращивания ранних растений, овощных культур, цветов, кустов и деревьев, а также в животноводческих сооружения, требующих подогрева почвы. Устройство содержит солнечный...
Тип: Изобретение
Номер охранного документа: 0002651276
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4a65

Способ подземной разработки наклонных рудных залежей

Изобретение относится к горной промышленности и может быть использовано при подземной разработке наклонных рудных месторождений полезных ископаемых на больших глубинах в условиях повышенного горного давления. Способ включает отработку залежи сверху вниз вкрест простирания рудного тела, под...
Тип: Изобретение
Номер охранного документа: 0002651727
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4a7c

Способ вентиляции карьеров

Изобретение относится к горному делу, а именно к проветриванию карьеров, и может быть использовано для интенсификации воздухообмена в карьерном пространстве, очистки воздуха. Способ вентиляции карьеров путем организации воздухообмена атмосферы карьера за счет прохождения потока воздуха через...
Тип: Изобретение
Номер охранного документа: 0002651670
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4ade

Способ интенсификации естественного воздухообмена в глубоких карьерах

Изобретение относится к горнодобывающей отрасли, в частности к способу интенсификации естественного воздухообмена в глубоких карьерах. Технический результат заключается в повышении интенсивности естественного проветривания карьера и увеличении объема карьерного пространства, проветриваемого...
Тип: Изобретение
Номер охранного документа: 0002651666
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4af6

Устройство автономной добычи твердых полезных ископаемых со дна континентального шельфа

Изобретение относится к горной промышленности и может быть использовано при добыче россыпных месторождений твердых полезных ископаемых со дна шельфа. Устройство автономной добычи твердых полезных ископаемых со дна континентального шельфа, включающее грейферный ковш, состоящий из емкости и...
Тип: Изобретение
Номер охранного документа: 0002651660
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b23

Устройство для эвакуации горнорабочих в аварийной ситуации

Изобретение относится к горнодобывающей промышленности и может быть использовано для защиты и эвакуации горнорабочих из тупиковых выработок при внезапных выбросах газа, загазованности выработок и возникновении в них пожара. Техническим результатом является оперативная эвакуация горнорабочих из...
Тип: Изобретение
Номер охранного документа: 0002651663
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4c98

Пространственная плита покрытия

Изобретение относится к строительству, а именно к покрытию зданий и сооружений. Технический результат заключается в повышении несущей способности большепролетной плиты покрытия. Пространственная плита покрытия разреженной структуры включает верхний и нижний пояса криволинейного очертания,...
Тип: Изобретение
Номер охранного документа: 0002652045
Дата охранного документа: 24.04.2018
Показаны записи 71-73 из 73.
20.04.2023
№223.018.4d34

Способ получения композитного углеродсодержащего материала

Изобретение относится к композитным материалам на углеродной основе, применяющимся в электрометаллургии в составе электродов, в частности, в электролитическом производстве алюминия и может быть использовано при изготовлении катодных блоков и набивной массы для монтажа катодного устройства...
Тип: Изобретение
Номер охранного документа: 0002793027
Дата охранного документа: 28.03.2023
30.05.2023
№223.018.72f3

Анодный штырь алюминиевого электролизера

Изобретение относится к анодному штырю самообжигающегося анода в электролизерах с самообжигающимся анодом для получения алюминия с верхним токоподводом. Анодный штырь содержит стальной стержень цилиндрической формы в его верхней части и конической - в нижней части. Нижняя коническая часть...
Тип: Изобретение
Номер охранного документа: 0002732934
Дата охранного документа: 24.09.2020
16.06.2023
№223.018.7c3f

Анодное устройство электролизера для производства алюминия

Изобретение относится к анодному устройству электролизера с самообжигающимся анодом и верхним токоподводом для производства алюминия. Анодное устройство содержит угольный анод с запеченными в него штырями, подводящими ток от анодной шины к аноду, выполненными из сплава технического Al с Mn с...
Тип: Изобретение
Номер охранного документа: 0002742557
Дата охранного документа: 08.02.2021
+ добавить свой РИД