×
02.10.2019
219.017.cea0

Результат интеллектуальной деятельности: Керамический композиционный материал и изделие, выполненное из него

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива. Предложен керамический композиционный материал, содержащий, мас.%: 5-7 нитрида алюминия AlN, 5-15 карбидокремниевых нитевидных кристаллов SiC, 3-5 оксида иттрия YO, и SiC в качестве основы. Керамический материал получен методом искрового плазменного спекания с применением индукционного нагрева. Технический результат - снижение температуры спекания керамического композиционного материала до 1800-1900°С, повышение рабочей температуры до 1500°С и жаростойкости (изменение массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°С в течение 500 ч не более 3%) при сохранении прочностных характеристик при комнатной температуре, а также обеспечение теплопроводности материала на уровне 65-100 Вт/м⋅К. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива.

Высокотемпературные металлы и керамика в сочетании с системами охлаждения играют решающую роль в развитии аэрокосмических двигателей, а также в системах тепловой защиты транспортных средств. Однако возрастающая тяжесть условий эксплуатации во многих случаях ограничивает выбор материалов высокотемпературной керамикой. Общепризнанно, что компоненты суперсплавов в настоящее время работают в температурных пределах 1150-1250°С и для дальнейшего улучшения характеристик двигателя требуются новые материалы и технологии охлаждения. Основным препятствием для использования керамических материалов являются риски, связанные с катастрофическим разрушением, что характерно для монолитной керамики. Поэтому ключевым требованием, предъявляемым к керамическим материалам, является объемная прочность, которая должна значительно превышать напряжения, возникающие в узлах и деталях при условиях эксплуатации. Керамика на основе карбида кремния является одним из наиболее перспективных материалов для получения элементов горячего тракта двигателей и установок новых поколений. Однако вследствие ковалентной природы связи Si-C спекание карбида кремния без использования активаторов заканчивается при достижении плотности порядка 70% от теоретической (ТП), что резко снижает прочностные свойства керамики. Традиционные подходы уплотнения SiC представляют собой твердофазное спекание с добавками В и С или жидкофазное спекание с добавками оксидов металлов, таких как Al2O3 и Y2O3. Преимущество керамики SiC, спеченной при наличии жидкой фазы, заключается в мелкодисперсной микроструктуре, сформированной при более низкой температуре за счет наличия жидкой фазы.

Известен керамический композиционный материал, содержащий 60,0-94,0 масс. % карбида кремния SiC и спекающие добавки - 0,5-20,0 масс. % нитрида алюминия AlN и 2,0-20,0 масс. % углерода С (GB 2170511 А, 06.08.1986 г.).

Данный материал обладает высокими прочностными характеристиками при относительной плотности 70-99% от теоретической. К его недостаткам можно отнести низкую рабочую температуру, составляющую 1400°С. Наличие несвязанного углерода в материале способствует диффузии кислорода через систему пор, образующихся в результате выгорания углерода и образования газообразных веществ, что приводит, в свою очередь, к снижению прочностных характеристик материала и его жаростойкости при температуре 1500°С. Также к недостаткам можно отнести высокую температуру спекания 2150°С, что делает затруднительным изготовление крупногабаритных сложнопрофильных деталей.

Известен керамический композиционный материал, содержащий 87-90 масс. % карбида кремния SiC, 0,5-5,0 масс. % нитрида алюминия AlN, 0,5-3,0 масс. % титана Ti, 0,5-8,0 масс. % углерода С и 0-3,0 масс. % бора В (US 4753903 А, 28.06.1988 г.).

Данный материал обладает высокими прочностными характеристиками при относительной плотности более 90%. Его недостатком является высокая температура спекания 2000-2300°С, что делает затруднительным изготовление крупногабаритных сложнопрофильных деталей. Также он обладает низкой жаростойкостью при температурах выше 1400°С из-за содержания в нем титана.

Наиболее близким аналогом предлагаемого материала является керамический композиционный материал, содержащий:

AlN или Al2O3 или Al4C3 5,0 масс. %
В или BN 0,5-3,0 масс. %
Cw 20,0-30,0 об. %
SiC остальное,

при этом графитовые нитевидные кристаллы (вискеры) Cw имеют диаметр 0,02-2 мкм и длину 5-100 мкм, а соотношение их длины к диаметру составляет не менее 5 (US 4925815 А, п. 1 ф.и., пример 2, 15.05.1990 г.).

Введение в состав материала вискеров углерода Cw повышает прочностные характеристики на 20-25% при комнатной температуре и вакууме, однако из-за низкой окислительной стойкости углерода при высокой температуре происходит его выгорание, что приводит к потере прочности. Также к недостаткам материала можно отнести относительно низкие рабочую температуру, составляющую 1400°С, жаростойкость при температуре 1500°С и высокую температуру спекания 2100-2150°С, которая значительно затрудняет изготовление сложнопрофильных крупногабаритных деталей.

Технической задачей предлагаемой группы изобретений является разработка керамического композиционного материала и изделия, выполненного из него, работоспособных в условиях воздуха (окислительная среда) и продуктах сгорания топлива при температуре 1500°С.

Техническим результатом группы изобретений является снижение температуры спекания керамического композиционного материала до 1800-1900°С, повышение рабочей температуры до 1500°С и жаростойкости (изменение (убыль) массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°С в течение 500 ч не более 3%) при сохранении прочностных характеристик при комнатной температуре, а также обеспечение теплопроводности материала на уровне 65-100 Вт/м⋅К.

Для достижения технического результата предложен керамический композиционный материал, полученный методом искрового плазменного спекания с применением индукционного нагрева и содержащий карбид кремния SiC, нитрид алюминия AlN, карбидокремниевые нитевидные кристаллы SiCw и оксид иттрия Y2O3, при следующем соотношении, масс. %:

AlN 5-7
SiCw 5-15
Y2O3 3-5
SiC основа.

Предпочтительное соотношение длины и диаметра нитевидных кристаллов карбида кремния SiCw составляет 400-500.

Также предложено изделие, выполненное из данного керамического композиционного материала.

В отличие от материала-прототипа, для которого при температурах более 1400°C характерно выгорание углерода, в связи с чем материал приобретает пористую структуру и низкую прочность, наличие в предлагаемом составе материала нитевидных волокон карбида кремния SiCw повышает его прочность как при комнатной температуре, так и при температурах порядка 1500°C. Нитевидные кристаллы карбида кремния обладают рядом уникальных физических и механических свойств, в частности исключительно высокой, приближающейся к теоретической, механической прочностью, превышающей прочность массивных монокристаллов в 100-1000 раз, при этом прочность нитевидных кристаллов резко возрастает при уменьшении их диаметра. Это связано с тем, что при малых диаметрах нитевидные кристаллы практически не содержат дислокаций и имеют поверхность с минимальным количеством дефектов. По этой же причине они обладают особыми тепловыми, электро- и магнитными свойствами - благодаря слабому рассеянию носителей заряда на дефектах и поверхностях нитевидные кристаллы карбида кремния обладают более высокими теплопроводностью и электропроводностью, чем у обычных монокристаллов.

При содержании вискеров карбида кремния в количестве более 15 масс. % происходит формирование структурных неоднородностей за счет того, что вискеры могут образовывать локальные агломерации при перемешивании исходных компонентов при получении материала, что в свою очередь способствует снижению механических характеристик.

Предпочтительное соотношение длины и диаметра нитевидных волокон карбида кремния SiCw составляет 400-500. Данное соотношение позволяет равномерно распределить нитевидные кристаллы карбида кремния по объему шихты материала при перемешивании исходных компонентов. Превышение заданных значений приводит к образованию локальных агломераций, которые, в свою очередь, делают процесс изготовления материала более трудоемким и снижают физико-механические свойства спеченного материала. При меньшем соотношении длины и диаметра волокна карбида кремния в меньшей степени влияют на повышение механических свойств керамического композиционного материала.

Спекание предложенного керамического композиционного материала при температурах 1800-1900°C сопровождается рекристаллизационным ростом зерен карбида кремния и соответствующей деградацией механических свойств. Предотвратить рекристаллизацию можно путем введения в спекаемый материал компонентов, изоморфных карбиду кремния и образующих с ним при температуре спекания твердые растворы. К числу таких соединений относится, в частности, нитрид алюминия, имеющий структуру вюртцита, характерную для альфа-модификации карбида кремния, и образующий вследствие этого твердые растворы в химических системах SiC-AlN и SiC-AlN-Al2OC. Роль нитрида алюминия заключается в создании эффективного препятствия росту зерна карбида кремния. При этом твердые растворы SiC-AlN образуются на границах зерен карбида кремния и нитрида алюминия, повышая плотность и трещиностойкость керамики.

Одновременное наличие в составе материала нитрида алюминия и оксида иттрия в заданных количествах обеспечивают повышение рабочей температуры материала до 1500°C, его жаростойкости (изменение (убыль) массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°C в течение 500 ч составляет не более 3%), а также снижение открытой пористости до значений не более 1%. Данный эффект достигается за счет взаимодействия Y2O3 с пленкой SiO2, которая образуется под воздействием кислорода воздуха и всегда присутствует на поверхности порошка карбида кремния. Наличие жидкой фазы SiO2-Y2O3 способствует растворению нитрида алюминия в карбиде кремния и перекристаллизации с образованием твердых растворов AlN-SiC. Параллельно жидкая фаза способствует перестройке твердых частиц в соответствии с механизмом скольжения по границам зерен относительно друг друга за счет перераспределения жидкости под действием капиллярных сил, а также происходит граничное растворение зерен карбида кремния, не участвующих в образовании твердых растворов, приводящее к значительному уплотнению. Содержание оксида иттрия 3-5 масс. % в составе шихты достаточно для образования необходимого количества жидкой фазы и обеспечения в дальнейшем высокой жаростойкости конечного материала. Большого количества жидкой фазы следует избегать в силу того, что повышается вероятность деформации готового материала при воздействии рабочих температур, также может наблюдаться испарение жидкой фазы и ее взаимодействие с SiC, что приведет к неполному уплотнению материала.

Таким образом, образование в процессе спекания жидкой фазы взаимодействующих веществ (Y2O3 с пленкой SiO2) приводит к развитию микроструктуры и способствует значительному уплотнению материала, обеспечивая открытую пористость не более 1%, а также приводит к снижению температуры спекания на 200-350°C.

При содержании нитрида алюминия менее 5 масс. % количества образованного твердого раствора SiC-AlN недостаточно для предотвращения процесса рекристаллизации зерен карбида кремния. Введение же нитрида алюминия свыше 7 масс. % приводит в повышению окисляемости и деформации материала при температурах более 1300°C

Высокое содержание Y2O3 более 5 масс. % также приводит к снижению рабочей температуры материала вследствие окисляемости материала из-за высокой подвижности ионов иттрия при температурах выше 1200-1300°C.

Формирование термостойкой стеклокерамической фазы на внешней поверхности материала препятствует проникновению кислорода вглубь материала, а также снижает образование стеклофазы на границе зерен за счет образования твердых растворов, что, в свою очередь, повышает окислительную стойкость керамического композиционного материала, обеспечивая высокие значения его рабочей температуры и жаростойкости.

Получение предлагаемого материала проводят методом искрового плазменного спекания. Технология метода искрового плазменного спекания основана на прохождении импульса постоянного тока непосредственно через заготовку. При этом генерируются очень высокие скорости нагрева и охлаждения (до 600°C/мин). Данный метод позволяет достигнуть 100% уплотнения заготовки при более низких температурах и времени, чем обычный обжиг или горячее изостатическое прессование. Это позволяет исключить нежелательный рост зерен матрицы и деградацию наполнителя в случае армирования получаемого материала.

Таким образом, изготовление материала методом искрового плазменного спекания и подобранное соотношение компонентов, обеспечивающее протекание описанного выше жидкофазного механизма, позволяют снизить температуру спекания материала на 200-350°C.

Примеры осуществления.

Для получения шихты предложенного керамического композиционного материала использовали порошки исходных компонентов со следующим средним размером фракций: 2,5 мкм для карбида кремния, 0,5 мкм для нитрида алюминия и 0,3 мкм для оксида иттрия. Перемешивание тонкодисперсных порошков исходных компонентов проводили посредством магнитной мешалки и ультразвукового гомогенизатора в стеклянных стаканах в среде изопропилового спирта в течение 2 часов с последующей сушкой при температуре 90°C в течение 6-8 ч. Спекание керамического композиционного материала проводили на установке искрового плазменного спекания HPW 400/500-2200-2500-PS/BK методом гибридного нагрева (искровое плазменное спекание и индукционный нагрев) в среде азота при температуре 1800-1900°C.

Были изготовлены образцы предлагаемого керамического композиционного материала трех составов, а также образец материала-прототипа. Составы образцов материалов приведены в таблице 1.

Далее образцы испытывали на жаростойкость в электропечи типа SNOL 12/16 при температуре 1500°C в течение 500 ч. в атмосфере воздуха с фиксацией массы образцов до и после нагрева. Испытания на 4-х точечный изгиб проводили с использованием испытательной машины Zwick Roell Z010 при комнатной температуре. Коэффициент теплопроводности определяли расчетным путем на основании данных измерения температуропроводности и теплоемкости в интервале температур 20-1500°C методами лазерной вспышки (в среде аргона с расходом 70 мл/мин с калибровкой мощности импульса излучения по стандартному образцу из монокристаллического α-Al2O3), дифференциальной сканирующей калориметрии (с использованием платиновых тиглей при нагревании 10°C/мин в среде протока гелия 100 мл/мин) и адиабатической калориметрии (в среде аргона со скоростью нагрева 3°C/мин). Результаты исследований представлены в таблице 2.

Анализ полученных результатов свидетельствует о том, что предлагаемый керамический композиционный материал обладает сниженной на 200-350°C относительно прототипа температурой спекания, повышенной до 1500°C рабочей температурой и жаростойкостью (изменение массы в атмосфере воздуха и продуктах сгорания топлива при температуре 1500°C в течение 500 ч не более 3%), при этом прочностные характеристики при комнатной температуре сохранены на высоком уровне (прочность при 4-х точечном изгибе составляет 510-620 МПа), а значение теплопроводности материала составляет 65-100 Вт/м⋅К.

Таким образом, применение предлагаемого керамического композиционного материала при изготовлении теплонагруженных деталей перспективных газотурбинных установок, в том числе облицовки камеры сгорания, обеспечивает их работоспособность в условиях воздействия агрессивной среды при температуре 1500°C в течение длительного времени (не менее 500 ч), что позволяет повысить надежность и ресурс изделий.

Источник поступления информации: Роспатент

Показаны записи 271-280 из 354.
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2d1e

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в том числе сплавов системы Al-Mg-Li, используемых в виде тонкостенных прессованных полуфабрикатов для стрингерного и силового набора фюзеляжа в клепаных и сварных конструкциях авиакосмической техники и судостроения....
Тип: Изобретение
Номер охранного документа: 0002256720
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d22

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Предложен способ получения изделия из жаропрочного никелевого сплава, включающий вакуумно-индукционную выплавку, получение...
Тип: Изобретение
Номер охранного документа: 0002256722
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d30

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения отливок из жаропрочных сплавов, в частности турбинных лопаток газотурбинных двигателей и установок. Устройство содержит зону нагрева с нагревателем и зону охлаждения, разделенные теплоизолирующим экраном. В зоне нагрева расположен нагреватель с...
Тип: Изобретение
Номер охранного документа: 0002258578
Дата охранного документа: 20.08.2005
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
Показаны записи 271-280 из 326.
19.04.2019
№219.017.2ebc

Способ изготовления штамповок дисков из слитков высокоградиентной кристаллизации из никелевых сплавов

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, полученных методом высокоградиентной кристаллизации, работающих при температурах выше 600°С, в частности дисков ГТД. Предлагаемый способ включает вакуумно-индукционную выплавку,...
Тип: Изобретение
Номер охранного документа: 0002389822
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3102

Стеклокерамический композиционный материал

Изобретение относится к стеклокерамическим композиционным материалам на основе наноструктурированных стеклокерамических матриц, армированных углеродными наполнителями, для изготовления кольцевых элементов и деталей перспективной авиационно-космической техники с рабочей температурой до 1300°С,...
Тип: Изобретение
Номер охранного документа: 0002412135
Дата охранного документа: 20.02.2011
19.04.2019
№219.017.3218

Способ термомеханической обработки изделий из титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать...
Тип: Изобретение
Номер охранного документа: 0002457273
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3246

Флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. Флюс характеризуется повышенной рафинирующей способностью от металлических примесей, препятствует потере иттрия и имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002451762
Дата охранного документа: 27.05.2012
19.04.2019
№219.017.339e

Сплав на основе алюминия

Предлагаемое изобретение относится к области цветной металлургии и может быть использовано в авиакосмической промышленности и транспортном машиностроении. Сплав содержит следующие компоненты, мас.%: медь 3,50-4,50, магний 1,20-1,60, марганец 0,30-0,60, цирконий 0,01-0,15, серебро 0,01-0,50,...
Тип: Изобретение
Номер охранного документа: 0002447173
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
+ добавить свой РИД