×
02.10.2019
219.017.cda3

Результат интеллектуальной деятельности: СПОСОБ ПОДАЧИ ТОПЛИВА В ФОРСАЖНУЮ КАМЕРУ СГОРАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к способам управления режимами работы форсажной камеры сгорания. Техническим результатом изобретения является повышение эффективности управления рабочим процессом в форсажной камере сгорания за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и управления положением распределительного крана топливных коллекторов. Изобретение от известных отличается тем, что дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением распределительного крана топливных коллекторов. 3 ил.

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к способам управления режимами работы форсажной камеры сгорания.

Наиболее близким по технической сущности заявляемому изобретению является способ подачи топлива в форсажную камеру сгорания, включающий измерение положения рычага управления двигателем, измерение полного давления воздуха за компрессором, а также измерение температуры воздуха на входе двигателя и управление величиной подаваемого топлива в форсажную камеру сгорания [«Турбореактивный двигатель с форсажной камерой сгорания АЛ-31Ф» учебное пособие, под редакцией А.П. Назарова. М.: ВВИА, 1987., с. 313].

Недостатком данного способа является низкая эффективность управления рабочим процессом в форсажной камере сгорания [Кудрявцев А.В., Медведев В.В. Форсажные камеры и камеры сгорания ПВРД. Инженерные методики расчета характеристик. Москва: ЦИАМ, 2013. 131 с.], обусловленная влиянием условий внешней среды на полноту сгорания топлива в циркуляционной зоне газового потока форсажной камеры сгорания [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 132].

Техническим результатом изобретения является повышение эффективности управления рабочим процессом в форсажной камере сгорания, за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и управления положением распределительного крана топливных коллекторов.

Указанный технический результат достигается тем, что в известном способе подачи топлива в форсажную камеру сгорания газотурбинного двигателя летательного аппарата, включающий измерение положения рычага управления двигателем, измерение полного давления воздуха за компрессором, а также измерение температуры воздуха на входе двигателя и управление величиной подаваемого топлива в форсажную камеру сгорания, согласно изобретению дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением распределительного крана топливных коллекторов.

Сущность изобретения заключается в том, что дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением распределительного крана топливных коллекторов.

Известно [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. 616 с.], что значение положения рычага управления двигателем является режимным параметром и определяет количество подаваемого топлива в форсажную камеру сгорания.

Известно [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. 616 с.], что для заданного количества подаваемого топлива при сохранении постоянного расхода топлива, на выходе из форсажной камеры сгорания изменяется величина полного давления в зависимости от условий внешней среды. Повышение полного давления на выходе из форсажной камеры сгорания при сохранении неизменного расхода топлива свидетельствует о снижении эффективности сжигания топлива, за счет ухудшения образования топливовоздушной смеси перед стабилизатором пламени и снижении коэффициента полноты сгорания топлива в циркуляционной зоне газового потока форсажной камеры сгорания.

В ходе исследований эффективности организации рабочего процесса в форсажной камере сгорания, проведенных в Военном учебно-научном центре Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» установлено, что требуемое значение коэффициента полноты сгорания топлива в циркуляционной зоне газового потока форсажной камеры сгорания зависит от условий внешней среды. Так на режиме работы газотурбинного двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» топливо подается с первого топливного коллектора, расположенного непосредственно перед стабилизатором пламени. При изменении условий внешней среды параметры газового потока изменяются. Так, в частности при возрастании скорости газового потока время нахождения топлива в газовом потоке перед стабилизаторам пламени уменьшается. Это приводит к ухудшению качества подогрева топлива, то есть качества образования топливовоздушной смеси. Известно, что снижение качества топливовоздушной смеси, в свою очередь приводит к ухудшению процессов горения, и как следствие снижению коэффициента полноты сгорания топлива в циркуляционной зоне газового потока [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник для студентов вузов / В.В. Кулагин. - М.: Машиностроение, 2003., с. 161]. При снижении коэффициента полноты сгорания топлива в циркуляционной зоне газового потока фронт пламени смещается ближе к выходу из форсажной камеры сгорания и снижает степень подогрева газового потока, что обуславливает повышение величины полного давления на выходе из форсажной камеры сгорания. Для обеспечения требуемого значения коэффициента полноты сгорания топлива в циркуляционной зоне газового потока необходимо обеспечить заданное время нахождения топлива перед стабилизатором пламени, что возможно за счет увеличения пути которое проходит топливо в газовом потоке от впрыска в газовый поток до стабилизатора пламени.

Изменение полноты сгорания топлива в циркуляционной зоне газового потока возможно за счет изменения топливного коллектора, из которого происходит подача топлива в газовый поток, что соответствует изменению места с которого осуществляется подача топлива в газовый поток, который должен находится на большем удалении от стабилизатора пламени по сравнению с первым коллектором. Чем больше влияние условий внешней среды, тем более удаленный коллектор необходимо включать в работу. Таким образом при повышении давления на выходе из форсажной камеры сгорания датчик полного давления на выходе из форсажной камеры сгорания фиксирует действительное значение полного давления и передает информацию о нем в регулятор положения распределительного крана топливных коллекторов, где сигнал сравнивается с заданным программой управления значением величины полного давления и при несоответствии сигналов согласно программы управления вырабатывает сигнал об изменении топливного коллектора, из которого происходит подача топлива, который передается в распределитель форсажного топлива. Таким образом при необходимости изменения топливного коллектора, из которого происходит подача топлива в форсажную камеру сгорания распределитель форсажного топлива выключает первый коллектор и включает в работу второй или третий топливный коллектор, что зависит от величины разности заданного и действительного значения полного давления на выходе из форсажной камеры сгорания, при сохранении заданного расхода топлива в форсажную камеру сгорания.

Поэтому согласно изобретению, измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания, а также распределитель форсажного топлива измеряет количество подаваемого топлива, в зависимости от их значения изменяется место подачи топлива, за счет изменения коллектора из которого осуществляется подача топлива в газовый поток перед стабилизатором пламени. Отличием от существующего способа подачи топлива является то, что на режиме работы газотурбинного двигателя «ПОЛНЫЙ ФОРСАЖ» при аналогичном с прототипом расходе топлива, топливо подается не со всех коллекторов. Коллектора с которых осуществляется подача топлива определяется согласно программе управления, этим объясняется наличие дополнительных (дежурных) коллекторов в системе подачи топлива. Топливные коллектора располагаются на одинаковом расстоянии, друг от друга соответствующем характерному размеру стабилизатора пламени [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. 616 с.].

На фиг. 1 приведена программа управления величиной подаваемого топлива в форсажную камеру сгорания в зависимости от режима работы двигателя, где обозначено: αруд min - минимальное значение положения рычага управления двигателем; αруд max - максимальное значение положения рычага управления двигателем; Т*в max - линия максимального расхода топлива при максимальном значение температуры воздуха на входе двигателя; Т*в - линия расчетного количества топлива при расчетном значении температуры воздуха на входе двигателя; Т*в min - линия минимального расхода топлива при минимальном значении температуры воздуха на входе двигателя; - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при минимальном значении температуры воздуха на входе двигателя; - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЬШ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при минимальном значении температуры воздуха на входе двигателя.

Из фиг. 1 видно, что каждому значению величины положения рычага управления двигателем соответствует заданное значение величины подаваемого топлива. При изменении положения рычага управления двигателем от режима работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» до режима работы двигателя «ПОЛНЫЙ ФОРСАЖ» расход топлива в форсажную камеру сгорания увеличивается, обеспечивая заданный режим работы двигателя. Из фиг. 1 также видно, что в зависимости от температуры воздуха на входе двигателя, чем выше температура на входе двигателя, тем больше расход топлива.

На фиг. 2 представлена программа управления местом подачи топлива в зависимости от количества подаваемого топлива в форсажную камеру сгорания, где обозначено: - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Р*ф min - линия места подачи топлива при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания; Р*ф max - линия места подачи топлива при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания; Р*ф - линия места подачи топлива при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания; Lкол мф min - значение места подачи топлива при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол мф - значение места подачи топлива при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол мф max - значение места подачи топлива при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол пф max - значение места подачи топлива при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Lкол пф - значение места подачи топлива при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Lкол пф min - значение места подачи топлива при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ».

Для обеспечения корректировки места подачи топлива по величине полного давления газового потока на выходе из форсажной камеры сгорания в распределителе форсажного топлива по сигналу от регулятора сопла и форсажа определяется потребное количество топлива, а по сигналу от регулятора положения распределительного крана топливных коллекторов осуществляется корректировка топливного коллектора, из которого подается топливо в газовый поток. Затем вычисляется относительный расход топлива, как указано в книге Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 131. Согласно зависимостей, приведенных в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 135 определяется, подогрев газового потока, зависящий от относительного расхода топлива. Величина полного давления на выходе из форсажной камеры сгорания зависит от подогрева газового потока, согласно приведенным в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М: Машиностроение, 2002. с. 167 данным. Тем самым заложенный алгоритм расчета обеспечивает выработку заданного значения величины полного давления на выходе из форсажной камеры сгорания. Таким образом на основании рассчитанного количества, подаваемого в форсажную камеру сгорания топлива, в регуляторе положения распределительного крана топливных коллекторов определяется заданное значение полного давления газового потока на выходе из форсажной камеры сгорания, и сравнивается с действительным значением, полученным от датчика полного давления газового потока на выходе из форсажной камеры сгорания. В качестве датчика полного давления газового потока на выходе из форсажной камеры сгорания может быть использован, например, пьезоэлектрический датчик давления EL-SCADA RAV [https://el-scada.ru/davlenie/dinamicheskoe-davlenie/pezoelektricheskie-datchiki-dinamicheskogo-davleniya дата обращения 31.05.2017]. Если действительное значение полного давления газового потока на выходе из форсажной камеры сгорания отличается от заданного в регуляторе положения распределительного крана топливных коллекторов вырабатывается сигнал о необходимости изменения топливного коллектора из которого осуществляется подача топлива в газовый поток перед стабилизатором пламени. При изменении места подачи топлива обеспечивается эффективное образование топливовоздушной смеси, что приводит к высокой полноте сгорания топлива в циркуляционной зоне газового потока. Заданное значение коэффициента полноты сгорания топлива в циркуляционной зоне газового потока находится в пределах от 0,8 до 0,85 см., например, [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник для студентов вузов / В.В. Кулагин. - М.: Машиностроение, 2003., с. 161].

Этим достигается указанный в изобретении технический результат.

На фиг. 3 приведена структурная схема возможного варианта устройства, с помощью которого может быть реализован способ подачи топлива в форсажную камеру сгорания, где обозначено: 1 - форсажный насос; 2 - регулятор сопла и форсажа; 3 - распределитель форсажного топлива; 4.1 - N - топливные коллектора; 5 - датчик полного давления газового потока на выходе из форсажной камеры сгорания; 6 - регулятор положения распределительного крана топливных коллекторов.

Назначение датчиков и элементов, входящих в систему ясны из их названия. Форсажный насос 1, регулятор сопла и форсажа 2, топливные коллектора 4.1 - N работают аналогично прототипу. Для обеспечения требуемого расхода топлива в форсажную камеру сгорания форсажный насос нагнетает топливо в систему и подает его на вход в регулятор сопла и форсажа, где поступившее топливо распределяется на топливный контур форсажной камеры сгорания и системы управления соплом, контур форсажного топлива поступает на вход распределителя форсажного топлива где оно распределяется по контурам согласно программе управления по расходу топлива. Для выработки управляющего воздействия в регуляторе положения распределительного крана топливных коллекторов 6 по сигналу от датчика полного давления газового потока на выходе из форсажной камеры сгорания 5, где он сравнивается с заданным значением величины полного давления на выходе из форсажной камеры сгорания, вырабатывается сигнал о необходимости изменения топливного коллектора, из которого осуществляется подача топлива в газовый поток перед стабилизатором пламени, согласно программе управления, поступающий в распределитель форсажного топлива 3, который обеспечивает расход топлива в форсажную камеру сгорания аналогично прототипа, а также осуществляет корректировку топливного коллектора из которого осуществляется подача топлива в газовый поток перед стабилизатором пламени. Таким образом, осуществляется коррекция места подачи топлива в форсажную камеру сгорания перед стабилизатором пламени при изменении условий внешней среды.

Регулятор положения распределительного крана топливных коллекторов предназначен для определения топливного коллектора через который должна осуществляться подача топлива в газовый поток перед стабилизатором пламени на основании получаемых данных от датчика полного давления на выходе из форсажной камеры сгорания и расчета по численным зависимостям величины полного давления газового потока на выходе из форсажной камеры сгорания от количества, подаваемого в форсажную камеру сгорания топлива и условий внешней среды. Конструктивно регулятор положения распределительного крана топливных коллекторов может быть выполнен различными способами и включает в себя целый комплекс состоящий из программно-задающего устройства, элементов сравнения, исполнительных механизмов. Он может быть, как электронным, так и гидромеханическим аналогично существующим регуляторам. Его конструкция зависит от специфических особенностей газотурбинного двигателя на котором он входит в состав системы управления подачи топлива в форсажную камеру сгорания.

Способ подачи топлива в форсажную камеру сгорания, включающий измерение положения рычага управления двигателем, измерение полного давления воздуха за компрессором, а также измерение температуры воздуха на входе двигателя и управление величиной подаваемого топлива в форсажную камеру сгорания, отличающийся тем, что дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением распределительного крана топливных коллекторов.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 244.
17.11.2018
№218.016.9e8d

Способ обнаружения препятствий в зоне посадки вертолета

Изобретение относится к радиолокационным системам посадки вертолета и может быть использовано при их разработке. Достигаемый технический результат - повышение вероятности обнаружения препятствий в зоне посадки за счет приема эхо-сигналов непосредственно из зоны посадки вертолета независимо от...
Тип: Изобретение
Номер охранного документа: 0002672578
Дата охранного документа: 16.11.2018
23.11.2018
№218.016.a032

Теплообменный аппарат

Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002673119
Дата охранного документа: 22.11.2018
24.11.2018
№218.016.a0cd

Способ защиты объектов от телевизионных средств космического наблюдения

Изобретение относится к области защиты объектов путем постановки аэрозольных образований и может быть использовано для маскировки объектов. Определяют параметры метеообстановки, координаты и интенсивность сброса аэрозолеобразующего состава (АОС), формируют аэрозольную завесу (AЗ). Сканируют по...
Тип: Изобретение
Номер охранного документа: 0002673169
Дата охранного документа: 22.11.2018
24.11.2018
№218.016.a0ec

Частотомер

Изобретение относится к области радиотехники, в частности к средствам оценивания статистических характеристик обнаружения радиосигналов, и может быть использовано для измерения частоты появления сигналов радиоэлектронных средств, а также проведения экспериментальных исследований. Технический...
Тип: Изобретение
Номер охранного документа: 0002673240
Дата охранного документа: 23.11.2018
13.01.2019
№219.016.af38

Способ поиска оптических и оптико-электронных приборов

Способ поиска оптических и оптико-электронных приборов основан на использовании дистанционно пилотируемого аппарата, который осуществляет сканирование зоны поиска по определенной траектории. При сканировании получают изображение зоны поиска как с облучением ее оптическим излучением и без...
Тип: Изобретение
Номер охранного документа: 0002676856
Дата охранного документа: 11.01.2019
22.02.2019
№219.016.c5ad

Способ концентрирования флороглюцина из водных растворов

Настоящее изобретение относится к способу концентрирования флороглюцина из водных растворов и может быть использовано при аналитическом контроле сточных вод, поступающих на биологическую очистку. Способ заключается в экстракции флороглюцина трибутилфосфатом из подкисленных до рН=1-5 водных...
Тип: Изобретение
Номер охранного документа: 0002680394
Дата охранного документа: 20.02.2019
23.02.2019
№219.016.c6c3

Способ защиты объектов от радиолокационных огневых комплексов

Изобретение относится к области систем защиты объектов от средств воздушной разведки, прицеливания и наведения путем формирования ложной радиолокационной обстановки и может быть использовано для радиолокационной маскировки индивидуальных и групповых стационарных объектов. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002680515
Дата охранного документа: 22.02.2019
21.03.2019
№219.016.eb5e

Тепловой имитатор

Изобретение относится к области снижения заметности вооружения и военной техники, ввода в заблуждение средств поражения высокоточным оружием, обеспечения скрытности от тепловизионных, оптикоэлектронных средств воздушно-космической разведки, увода и срыва прицеливания инфракрасных головок...
Тип: Изобретение
Номер охранного документа: 0002682355
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ed07

Способ концентрирования гидрохинона из водных растворов

Изобретение относится к способу концентрирования гидрохинона из водных растворов, который может быть использован при аналитическом контроле очищенных сточных вод, поступающих на биологическую очистку. Способ включает концентрирование гидрохинона полимерным порошкообразным материалом, в качестве...
Тип: Изобретение
Номер охранного документа: 0002682965
Дата охранного документа: 25.03.2019
01.04.2019
№219.016.fa3e

Центробежная форсунка

Изобретение относится к средствам распыливания жидкостей, растворов и может применяться в химической, пищевой промышленности, а также может быть использовано в системе топливоподачи различных энергетических устройств. Центробежная форсунка состоит из корпуса, шнека, в нижней части корпуса...
Тип: Изобретение
Номер охранного документа: 0002683610
Дата охранного документа: 29.03.2019
Показаны записи 11-16 из 16.
06.09.2019
№219.017.c7f5

Система подачи топлива в форсажную камеру сгорания

Изобретение относится к области автоматического регулирования газотурбинного двигателя, а именно к системе управления режимами работы форсажной камеры сгорания. Система управления форсажной камерой сгорания содержит последовательно соединенные форсажный насос, регулятор сопла и форсажа,...
Тип: Изобретение
Номер охранного документа: 0002699323
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c7f8

Система подачи топлива в форсажную камеру сгорания

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания. Техническим результатом изобретения является повышение эффективности управления рабочим процессом в форсажной камере сгорания...
Тип: Изобретение
Номер охранного документа: 0002699324
Дата охранного документа: 04.09.2019
12.12.2019
№219.017.ec30

Способ управления форсажной камерой сгорания

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к способам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива. Техническим результатом изобретения является повышение эффективности управления рабочим...
Тип: Изобретение
Номер охранного документа: 0002708476
Дата охранного документа: 09.12.2019
12.12.2019
№219.017.ec78

Система управления форсажной камерой сгорания

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива. Техническим результатом изобретения является повышение эффективности управления рабочим...
Тип: Изобретение
Номер охранного документа: 0002708474
Дата охранного документа: 09.12.2019
20.05.2023
№223.018.65a1

Входное устройство прямоточного воздушно-реактивного двигателя

Изобретение относится к области авиационной техники, в частности к конструкциям входных устройств, и может быть использовано в прямоточных воздушно-реактивных двигателях (ПВРД). Разработано входное устройство для подвода воздуха в камеру сгорания прямоточного воздушно-реактивного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002746615
Дата охранного документа: 19.04.2021
20.05.2023
№223.018.65a2

Входное устройство прямоточного воздушно-реактивного двигателя

Изобретение относится к области авиационной техники, в частности к конструкциям входных устройств, и может быть использовано в прямоточных воздушно-реактивных двигателях (ПВРД). Разработано входное устройство для подвода воздуха в камеру сгорания прямоточного воздушно-реактивного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002746615
Дата охранного документа: 19.04.2021
+ добавить свой РИД