×
02.10.2019
219.017.cc56

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОЛЫХ КРЕМНЕЗЕМНЫХ НАНОКАПСУЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению нанокапсул, которые могут использоваться для контролируемого высвобождения разнообразных инкапсулированных агентов. Предложен способ получения полых кремнеземных нанокапсул. При перемешивании готовят водную эмульсию, содержащую дисперсную фазу, выбранную из толуола, гексана или октаметилциклотетрасилоксана, в перемешиваемую эмульсию вводят раствор силиказоля в органическом растворителе, выбранном из тетрагидрофурана, моноглима, ацетонитрила, этилацетата или ацетона, до поликонденсации силиказоля. Образовавшийся осадок выделяют и высушивают. Изобретение позволяет получить нанокапсулы при комнатной температуре в нейтральной среде за период времени до 5 минут. 1 ил., 1 табл., 6 пр.

Изобретение относится к технологии нано- и микрокапсулирования различных низко- и высокомолекулярных соединений, в частности, к способу получения полых кремнеземных капсул, или коллоидосом. Наиболее важным свойством и главным назначением нано- и микрокапсул является контролируемое высвобождение инкапсулированного агента, на котором базируется создание лекарств, косметических и фармацевтических препаратов пролонгированного действия. Принципы инкапсулирования положены в основу создания самозалечивающихся материалов, антифрикционных и антикоррозионных покрытий и т.п.

Для создания микрокапсул на основе кремнийорганических соединений наибольшее распространение получил способ самоорганизации частиц на границе раздела фаз (получение эмульсий Пикеринга). В большинстве работ при создании коллоидосом в качестве стабилизатора дисперсной фазы используют модифицированный кремнезем, полученный по методу Штобера [ W., Fink A., Bohn Е. Controlled growth of monodisperse silica spheres in the micron size range // Journal of colloid and interface science. - 1968. - T. 26. - №1. - C. 62-69].

Например, известен способ получения микрокапсул путем стабилизации эмульсии кремнеземными частицами, поверхность которых модифицирована дифильными щетками. [Liu М. et al. Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles // ACS applied materials & interfaces. - 2016. - T. 8. - №. 47. - C. 32250-32258]. Гидрофильной частью таких щеток является полиэтиленоксидная цепь, а роль гидрофобной части играет полистирольная цепь. Диаметр полученных микрокапсул составляет больше 50 мкм, а их образование занимает несколько минут. Недостатком способа является необходимость сшивания полученных частиц на границе раздела фаз для выделения микрокапсул в сухом виде, что достигается путем образования интерполимерных комплексов с участием полиэтиленоксидной цепи.

Известен способ получения микрокапсул из эмульсий вода в масле, стабилизированных гидрофильными частицами кремнезема. [Qu Y. et al. Interfacial polymerization of dopamine in a pickering emulsion: synthesis of cross-linkable colloidosomes and enzyme immobilization at oil/water interfaces //ACS applied materials & interfaces. - 2015. - T. 7. - №. 27. - C. 14954-14964]. Для придания устойчивости таким коллоидосомам используют допамин, который диффундирует к границе раздела фаз и полимеризуется там. Образовавшийся полидопамин сшивает частицы кремнезема за счет водородного связывания с ними. Средний размер получаемых частиц составляет 20-25 мкм, а их образование длится 24 часа. Недостатками данного способа является необходимость проведения полимеризации допамина на границе раздела фаз и небольшая скорость образования микрокапсул.

Известно также, что получение микрокапсул возможно с помощью частиц кремнезема, модифицированных октадецилтриметоксисиланом [Wang Н. et al. All-silica colloidosomes with a particle-bilayer shell // ACS nano. - 2011. - T. 5. - №. 5. - C. 3937-3942], триметилэтоксисиланом. [Zhao Y. et al. Silica nanoparticles catalyse the formation of silica nanocapsules in a surfactant-free emulsion system // Journal of Materials Chemistry A. - 2015. - T. 3. - №. 48. - C. 24428-24436] или гексадецилтриметоксисиланом [Zhao Y. et al. Microencapsulation of hydrophobic liquids in closed all-silica colloidosomes // Langmuir. - 2014. - T. 30. - №. 15. - C. 4253-4261]. Такими частицами стабилизируют эмульсии вода в масле, при этом их сшивку в монослой осуществляют сверхразветвленным полиэтоксисилоксаном, находящимся в масляной фазе, по имеющимся гидроксильным группам на поверхности кремнеземных частиц. В первом и втором случае формирование оболочки длится 3 дня, в третьем - 1 день. Диаметр образующихся при этом капсул варьируется в пределах от 1 до 4 мкм, а в случае кремнеземных частиц, модифицированных триметилэтоксисиланом, минимальный размер образующихся капсул составляет 300 нм.

В целом, основными недостатками всех способов получения микрокапсул путем стабилизации эмульсий кремнеземными частицами являются необходимость предварительной модификации кремнеземных частиц, использования сшивающего агента для образования монолитной оболочки капсул, а также длительное время ее формирования. Отличительной чертой таких способов является проведение процесса в кислых или щелочных условиях в зависимости от типа эмульсии: масло в воде или вода в масле. Кроме того, образующиеся при этом капсулы характеризуются микронными размерами.

Известен способ получения капсул, в том числе нанометрового размера, заключающийся в стабилизации эмульсий сверхразветвленным полиэтоксисилоксаном или полиалкилалкоксисилоксаном с последующим его гидролизом и поликонденсацией на границе раздела фаз и образованием кремнеземной оболочки [ЕР 3124112 A1; Zhao Y. et al. A facile one-step approach toward polymer@ SiO2 core-shell nanoparticles via a surfactant-free miniemulsion polymerization technique // Macromolecules. - 2016. - T. 49. - №. 5. - C. 1552-1562; Zhao Y. et al. Hybrid nanostructured particles via surfactant-free double miniemulsion polymerization //Nature communications. - 2018. - T. 9. - №. 1. - C. 1918]. Такой способ позволяет получать капсулы размером от 0.01 мкм до 100 мкм с ядром из полистирола, полиметилметакрилата, полидиметилсилоксана, а также капсулы сложной структуры при стабилизации двойных эмульсий. При этом возможность получения капсул с размером 0.01 мкм вызывает сомнения, так как минимальный размер капсул, описанный в приведенных примерах, составляет 100 нм. Главным недостатком данного способа является необходимость проведения инкапсулирования при повышенной температуре в течение длительного времени (не менее одного дня), а в некоторых случаях требуется или кислая, или щелочная среда в зависимости от капсулянта. Данный способ как наиболее близкий к заявляемому по технической сущности, был выбран в качестве прототипа.

До сих пор не был известен способ получения полых кремнеземных нанокапсул, обеспечивающий быстрое их образование в мягких условиях.

Задачей заявляемого изобретения являлась разработка способа получения полых кремнеземных нанокапсул, позволяющего получать их быстро, при комнатной температуре и в нейтральной среде.

Задача решается заявляемым способом получения полых кремнеземных нанокапсул, включающим стабилизацию эмульсии масло/вода и последующую поликонденсацию прекурсора оболочки на границе раздела, причем в качестве прекусора оболочки используют раствор силиказоля в органических растворителях.

Силиказоль является молекулярной формой кремнезема [Kazakova V. et al. Hyperbranched ethylsilicate and molecular silica sole on its base // Polymer Preprints(USA). - 1998. - T. 39. - №. 1. - C. 483-484].

Технический результат состоит в создании нового технологичного способа получения полых кремнеземных нанокапсул, который обеспечивает существенное ускорение процесса формирования оболочки по сравнению с прототипом, не требует применения сшивающих агентов и повышенной температуры.

В качестве дисперсной фазы для получения эмульсии масло/вода используют толуол, гексан или октаметилциклотетрасилоксан, которые эмульгируют в воде при скорости от 2000 до 5000 об/мин., затем добавляют раствор силиказоля в органическом растворителе, выбранным из ряда: тетрагидрофуран, моноглим, ацетонитрил, этилацетат, ацетон. Выпавший при этом белый осадок отделяют на центрифуге и сушат в вакууме. Главным отличием разработанного способа от аналогов и прототипа является высокая скорость образования капсул (капсулы образуются практически мгновенно, сразу после добавления раствора прекурсора к эмульсии). Кроме того, не требуется проводить капсулирование при повышенной температуре, использовать кислотную или щелочную среду. Полученные капсулы характеризуются размерами от 100 до 500 нм с превалирующим содержанием той или иной размерной фракции в зависимости от условий эмульгирования и природы дисперсной фазы.

В таблице приведены примеры, иллюстрирующие заявляемое изобретение.

На фиг. 1 представлены результаты сканирующей (а) и просвечивающей (б) электронной микроскопии для капсул, полученных в примере 2, на основании которых можно утверждать, что частицы имеют правильную шарообразную форму и содержат внутреннюю полость, причем размеры частиц коррелируют с данными динамического светорассеяния, приведенными в таблице.

Основными преимуществами заявляемого способа являются

(а) возможность в течение 0.5-5 мин после смешения реагентов получать нанокапсулы; (б) проведение капсулирования в мягких условиях: при комнатной температуре и в нейтральной среде; (в) не требуется применение сшивающих агентов.

Изобретение иллюстрируется примерами 1-6, представленными в таблице. Пример 1 подробно описан ниже.

Пример 1.

Смесь воды и толуола в качестве дисперсной фазы в массовом соотношении, равном 100:1, эмульгируют с помощью диспергатора Т 50 digital ULTRA-TURRAX® dispersion device (IKA) при скорости от 2000 об/мин, спустя минуту к перемешивающейся эмульсии добавляют 3.5% раствор силиказоля в тетрагидрофуране, в таком количестве, чтобы массовое соотношение сухого силиказоля и дисперсной фазы составляло 0.7:1. Через 30 секунд после добавления раствора силиказоля перемешивание останавливают и полученные частицы выделяют на центрифуге при скорости ее вращения 9000 об/мин. Далее частицы сушат в вакууме в течение 3 часов при 50°С. Выход продукта составляет 95% по кремнию. Полученные частицы анализируют методами динамического светорассеяния, сканирующей и просвечивающей микроскопии на наличие шарообразных частиц и полостей в них. Результаты приведены в таблице.

Получение капсул в примерах 2-6, представленных в таблице, осуществляют аналогично описанному в примере 1.

Способ получения полых кремнеземных нанокапсул, включающий приготовление водной эмульсии, содержащей дисперсную фазу, выбранную из толуола, гексана или октаметилциклотетрасилоксана, при перемешивании со скоростью 2000-5000 об/мин, введение в перемешиваемую эмульсию раствора силиказоля в органическом растворителе, выбранном из тетрагидрофурана, моноглима, ацетонитрила, этилацетата или ацетона, до поликонденсации силиказоля с образованием осадка, выделение осадка и сушку.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 108.
08.11.2018
№218.016.9b04

Реактор для получения алкоксисиланов

Изобретение относится к технологии получения кремнийсодержащих соединений и может быть использовано в химической промышленности. Реактор для получения алкоксисиланов содержит рабочую камеру 1, снабженную мелющими телами, электрообогревателем 2, технологическими патрубками 4, 5, установленную на...
Тип: Изобретение
Номер охранного документа: 0002671732
Дата охранного документа: 06.11.2018
09.11.2018
№218.016.9b7e

Тепло- и термостойкая полимерная композиция трибологического назначения

Изобретение относится к полимерной композиции для изготовления теплонагруженных изделий трибологического назначения на основе полиариленэфиркетона и полиарилата, образующейся в результате смешения вышеуказанных компонентов и последующей переработки полученной смеси при высокой температуре и...
Тип: Изобретение
Номер охранного документа: 0002671859
Дата охранного документа: 07.11.2018
26.01.2019
№219.016.b47c

Аддукты триаллилборанов с аммиаком и аминами в качестве аллилирующих реагентов

Изобретение относится к области элементоорганической химии, конкретно к аддуктам триаллилборанов (RRC=CRCH)B с аминосоединениями RRNH состава 1:1. Значение радикалов следующее: R=R=R=Н; R=СН, R=R=Н; R=R=Н, R=СН; R=R=СН, R=Н, a R=R=Н; R=Н, R=Салкил, СНСалкенил; R=R=СН. Исключен аддукт, где...
Тип: Изобретение
Номер охранного документа: 0002678208
Дата охранного документа: 24.01.2019
26.01.2019
№219.016.b499

Полимерная композиция для получения криогелей поливинилового спирта и способ повышения их жесткости и теплостойкости

Изобретение относится к химии и технологии высокомолекулярных соединений, а именно к полимерным криогелям и их получению с целью использования формируемых материалов в медицине, косметологии и технике. Полимерная композиция для получения криогеля поливинилового спирта включает поливиниловый...
Тип: Изобретение
Номер охранного документа: 0002678281
Дата охранного документа: 24.01.2019
26.06.2019
№219.017.92ad

Этоксисодержащие линейные поликарбосилансилоксаны и способ их получения

Изобретение относится к химии и технологии элементоорганических соединений. Предложены новые этоксисодержащие линейные поликарбосилансилоксаны общей формулы (I), где при R=R=Me n - целые числа от 3 до 1500, m - от 1 до 50; при R=R=Ph n равно 1 или 2, m - целое число от 1 до 50. Предложен также...
Тип: Изобретение
Номер охранного документа: 0002692259
Дата охранного документа: 24.06.2019
05.07.2019
№219.017.a6aa

Способ получения сшитого гидрофильного полимера, проявляющего свойства суперабсорбента

Изобретение относится к химии высокомолекулярных соединений, а именно к способам получения сшитых гидрофильных полимеров, относящихся к суперабсорбентам, обладающих способностью поглощать большие количества воды. Способ получения сшитого гидрофильного полимера, проявляющего свойства...
Тип: Изобретение
Номер охранного документа: 0002467017
Дата охранного документа: 20.11.2012
10.08.2019
№219.017.be10

2-бромтетрафторэтилперфторалкиловые эфиры для получения эмульсий медико-биологического назначения

Изобретение относится к новым бромсодержащим перфторалкиловым эфирам , где n=5-9, которые обладают высокой растворяющей способностью по отношению к кислороду и углекислому газу и образуют в присутствии полоксамеров нетоксичные наноэмульсии в водно-солевых растворах, переносящие термическую...
Тип: Изобретение
Номер охранного документа: 0002696871
Дата охранного документа: 07.08.2019
10.09.2019
№219.017.c980

Е-2-арил-2-трифторметил-1-нитроциклопропаны и способ их получения

Изобретение относится к E-2-арил-2-трифторметил-1-нитроциклопропанам общей формулы I, где X=С, R=R=Н; X=С, R=Cl, R=Н; X=С, R=R=Cl; X=С, R=Br, R=Н; X=С, R=R=Br; X=С, R=C-С-алкил, R=Н; X=С, R=NO, R=Н; X=С, R=COAlk, R=Н; X=С, R=CF, R=Н; X=С, R=ОМе, R=Н; X=С, R=R=ОМе; X=С, R=F, R=Н; X=С,...
Тип: Изобретение
Номер охранного документа: 0002699654
Дата охранного документа: 09.09.2019
30.10.2019
№219.017.dbeb

N-метоксибензильные производные даунорубицина, обладающие антипролиферативными свойствами

Изобретение относится к N-метоксибензильным производным даунорубицина общей формулы I, где R=Н, ОСН. Технический результат: получены новые соединения, обладающие хорошими антипролиферативными свойствами при сравнительно низкой острой токсичности, которые могут найти применение в медицине для...
Тип: Изобретение
Номер охранного документа: 0002704326
Дата охранного документа: 28.10.2019
24.11.2019
№219.017.e5cb

Α-бром-ω-галогенперфторполиэфиры в качестве основы газотранспортных композиций медико-биологического назначения

Настоящее изобретение относится к соединению общей формулы где X=CF, Y=Вr, n=1, 2, 3; X=Y=Br, n=2; X=Br, Y=Cl, n=1, которое может быть использовано в качестве основы газотранспортных композиций медико-биологического назначения. 1 з.п. ф-лы, 14 пр.
Тип: Изобретение
Номер охранного документа: 0002707081
Дата охранного документа: 22.11.2019
Показаны записи 41-45 из 45.
08.11.2019
№219.017.df48

Силоксансодержащая эпоксидная композиция

Изобретение относится к области разработки полимерных композиций на основе эпоксидных смол, аминных отвердителей, наполнителей и других составляющих для использования в качестве адгезионно-активных покрытий высоконаполненных полимерных композиций (энергетических конденсированных систем), а...
Тип: Изобретение
Номер охранного документа: 0002705332
Дата охранного документа: 06.11.2019
01.02.2020
№220.017.fcc5

Самоотверждающаяся композиция на основе полидиметилсилоксана

Изобретение относится к области получения эластомерных композиций на основе полидиметилсилоксана и может использоваться для получения прочных силоксановых резин и герметиков. Самоотверждающаяся композиция, включающая полидиметилсилоксан с концевыми 3-аминопропил-диалкоксисилильными группами и...
Тип: Изобретение
Номер охранного документа: 0002712558
Дата охранного документа: 29.01.2020
18.03.2020
№220.018.0cfc

Новые мононатриевые соли органоалкоксисиланов и способ их получения

Изобретение относится к области химии кремнийорганических соединений. Предложены новые мононатриевые соли органоалкоксисиланов общей формулы (1), где Alk означает углеводородный радикал из ряда: -СН, -СН, -СНСНСН, -СНСНСНСН; R означает заместитель из ряда: -Cl, -N. Предложен также способ их...
Тип: Изобретение
Номер охранного документа: 0002716710
Дата охранного документа: 16.03.2020
12.04.2023
№223.018.4312

Радиационно стойкая пластичная смазка

Изобретение относится к пластичным смазкам на синтетической основе для работы различных узлов трения механизмов в условиях повышенной радиации в широком интервале температур. Предложена радиационно стойкая пластичная смазка на синтетической основе, содержащая (мас. %) димочевину 10,0-21,0,...
Тип: Изобретение
Номер охранного документа: 0002793583
Дата охранного документа: 04.04.2023
17.06.2023
№223.018.7f40

Композиции для получения кремнийорганических материалов с эффектом самозалечивания

Изобретение относится к области термостойких силоксановых композиций с эффектом самозалечивания и может найти применение в качестве герметизирующих и барьерных покрытий. Предложены композиции для получения материалов с эффектом самозалечивания, включающие полидиорганосилоксан, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002766219
Дата охранного документа: 09.02.2022
+ добавить свой РИД