×
02.10.2019
219.017.cb0c

Результат интеллектуальной деятельности: Устройство для экспресс-оценки газового фактора нефтегазовых скважин в процессе отбора глубинных проб пластового флюида

Вид РИД

Изобретение

№ охранного документа
0002701408
Дата охранного документа
26.09.2019
Аннотация: Изобретение относится к области исследования пластов в нефтегазовых скважинах путем дистанционного отбора проб жидкостей или газа и их опробования непосредственно в скважинах и используется для определения газового фактора в пластовом флюиде. Техническим результатом является усовершенствование конструкции скважинных пробоотборников. Устройство содержит баростойкий корпус с кабельной головкой, спущенные на кабеле в скважину, и размещенную в корпусе пробоприемную камеру, снабженную клапанами, выполненными с принудительным приводом, модули анализа флюидов, включающие датчики температуры и давления исследуемой пробы флюида, наземную систему дистанционного управления, включающую в себя процессор, служащий для передачи управляющих сигналов на рабочие элементы и модули устройства и снабженный программой для определения переданных по кабелю на поверхность характеристик пластовых флюидов. Причем в баростойком корпусе установлен дополнительный рабочий корпус, образующий пробоприемную камеру, в которой размещен поршень со штоком, разделяющий пробоприемную камеру на два отсека, сообщающиеся между собой посредством перепускного клапана, выполненного в указанном поршне, при этом пробоприемная камера снабжена терморегулируемым нагревателем и ультразвуковым измерителем скорости ультразвуковых колебаний в отобранной пробе пластовой жидкости, кроме того, к нижней части баростойкого корпуса присоединен сообщающийся с вышеуказанной пробоприемной камерой контейнер для сбора исследованных проб пластового флюида. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области исследования пластов в нефтегазовых скважинах путем дистанционного отбора проб жидкостей или газа и их опробования непосредственно в скважинах, и используется для определения газового фактора в пластовом флюиде.

Величина газового фактора нефти добываемой из конкретного нефтенасыщенного пласта является важным параметром, который оказывает значительное влияние на его продуктивность, в связи с чем необходимо осуществлять текущий контроль за его величиной в соответствии с нормативным документом РД 39-0147035-225-88.

Согласно общепринятой практике подобный контроль осуществляют, как правило, на устье скважины путем периодического отбора проб добываемой нефти и последующего их анализа в лабораторных условиях, либо путем непрерывного инструментального контроля за добываемой продукцией согласно ГОСТ Р 8.615-2005 с помощью специальных измерительных установок (М.Д. Валеев, А.Г. Газаров, О.В. Давыдова «Сравнительный анализ измерительных установок для определения газового фактора» // Нефтяное хозяйство, 2011, №1, с. 96-99).

Подобный метод измерений газового фактора (ГФ) целесообразен при условии эксплуатации одного продуктивного пласта. Однако, когда одной скважиной эксплуатируются два или более продуктивных пластов, то подобный метод измерений не позволяет точно оценить ГФ каждого отдельного пласта. Особенно важно знать ГФ каждого отдельного пласта на завершающей стадии разработки нефтяного месторождения (С.Г. Каменецкий, В.М. Кузьмин, В.П. Степанов «Нефтепромысловые исследования платов» // М., Недра, 2009).

Нефтегазодобывающие предприятия решают указанную проблему путем отбора глубинных проб добываемой продукции с помощью специальных скважинных пробоотборников спускаемых на кабеле - ПГМ-36-300, либо на проволоке в автономном исполнении - ПГМ-А-36-300 с объемом отбираемой пробы 300 мл. (www.vniigis.bashnet.ru).

Недостаток такого метода оценки газового фактора заключается в том, что он не является оперативным и приводит, с одной стороны, к значительному задалживанию скважин для выполнения подобных операции по отбору проб, а с другой - достаточно продолжительных их лабораторных исследований, включая дополнительную потерю времени на доставку проб с месторождения в соответствующую промысловую лабораторию, часто удаленную от промысла на несколько десятков километров.

Известно устройств для анализа пластовых флюидов непосредственно в скважине, содержащее модуль анализатора, установленного в проточной линии для перетекания пластового флюида из скважины внутрь пробоотборной камеры, находящейся внутри корпуса, спускаемого на каротажном кабеле в ствол скважины, (пат. РФ №2392430, Е21В 49/08, G01N 7/00, приоритет 19.04.2006 г., опубл. 20.06.2010 г.).

В известном устройстве для анализа газа в составе пластовой жидкости используется оптический датчик с детектором рассеяния, который включает в себя высокотемпературный элемент отбора образцов высокого давления с окнами, так что свет из соответствующего источника проходит через пластовые флюиды, протекающие через проточные линии или удерживаемые в них, на фотодетектор, расположенный на другой стороне проточной линии от источника света. Фокусирующая оптика может быть предусмотрена между источником света и фотодетектором, так что свет от источника света собирается и направляется непосредственно на фотодетектор. При этом, поскольку эффект рассеяния зависит от размера твердых частиц в пластовом флюиде, сопоставимых с длинами волн, подобных или меньших, чем размеры частиц, то посредством выбора подходящих длин волн с использованием оптического фильтра, возможно получать данные о размерах пузырьков или частиц и их концентрации. Кроме того, известное устройство содержит датчики температуры и давления, а клапаны, отсекающие объем исследуемой пробы, выполнены с принудительным приводом, например с электрическим.

Работа скважинных модулей анализа пластовых флюидов, камеры сбора, а также другие рабочие элементы скважинного прибора управляются наземной системой дистанционного управления, включающей в себя процессор, служащий для передачи управляющих сигналов на рабочие элементы скважинного прибора и снабженный программой для определения характеристик пластовых флюидов, переданных по кабелю на поверхность.

Известное устройство обеспечивает анализ отобранной глубинной пробы пластовой жидкости непосредственно в процессе отбора проб в скважине, в том числе позволяет качественно определить наличие газа и твердых частиц в пластовой жидкости, однако не предусматривает производить точную оценку величины газового фактора каждой из отобранных проб пластового флюида из соответствующего продуктивного пласта непосредственно в скважине.

Технической задачей, решаемой предлагаемым изобретением, является усовершенствование конструкции скважинных пробоотборников, позволяющее в процессе отбора глубинных проб пластового флюида осуществлять экспресс-оценку газового фактора с высокой точностью в режиме «online».

Указанная задача решается тем, что в устройстве для экспресс-оценки газового фактора нефтегазовых скважин в процессе отбора глубинных проб пластового флюида, содержащем баростойкий корпус с кабельной головкой, спущенные на кабеле в скважину, и размещенную в корпусе пробоприемную камеру, снабженную клапанами, выполненными с принудительным приводом, модули анализа пластовых флюидов, включающие датчики температуры и давления исследуемой пробы флюида, наземную систему дистанционного управления, включающую в себя процессор, служащий для передачи управляющих сигналов на рабочие элементы устройства и снабженный программой для определения переданных по кабелю на поверхность характеристик пластовых флюидов, в отличие от известного, в баростойком корпусе установлен дополнительный рабочий корпус, образующий пробоприемную камеру, в которой размещен поршень со штоком, разделяющий пробоприемную камеру на два отсека, сообщающиеся между собой посредством перепускного клапана, выполненного в указанном поршне, при этом пробоприемная камера снабжена терморегулируемым нагревателем и ультразвуковым измерителем скорости ультразвуковых колебаний в отобранной пробе пластовой жидкости, кроме того, к нижней части баростойкого корпуса присоединен сообщающийся с вышеуказанной пробоприемной камерой контейнер для сбора исследованных проб пластового флюида.

Дополнительный рабочий корпус установлен в баростойком корпусе с зазором между ними, а в полости зазора размещены электронные блоки управления рабочими элементами (модулями) устройства, соединенные с ними электрическими связями.

Пробоприемная камера в своей верхней части снабжена перегородкой, отделяющей от нее отсек с расположенными в нем редуктором и электродвигателем, а также механизмом реостата с подвижным ползуном.

Контейнер для сбора исследуемых проб пластового флюида сообщается с пробоприемной камерой посредством нажимного клапана, установленного в перегородке в нижней части пробоприемной камеры.

Датчики температуры и давления установлены на боковых сторонах внутри каждого из вышеуказанных отсеков.

На штоке поршня, разделяющего пробоприемную камеру на два отсека, навиты передающая и принимающая индукционные катушки для приведения в действие перепускного клапана.

Терморегулируемый нагреватель и ультразвуковой измеритель скорости ультразвуковых колебаний в отобранной пробе пластового флюида расположены в нижнем отсеке пробоприемной камеры, снабженном впускным клапаном, приводимым в действие электромагнитной катушкой.

На фиг. 1 представлена принципиальная схема устройства для отбора проб пластового флюида и ее экспресс-анализа.

На фиг. 2 представлена блок-схема управления исполнительными механизмами пробоотборника.

Предлагаемое устройство для отбора проб пластового флюида в скважине и дистанционной экспресс-оценки его газового фактора состоит из следующих узлов и деталей (см. Фиг. 1).

Устройство включает в свой состав баростойкий корпус 1, внутри которого находится рабочий корпус 2, установленный с зазором 3 между ними, и снабженный перегородкой 4, в канале 5 которой установлен нажимной клапан 6. К нижней части корпуса 1 посредством полого резьбового переходника 7 прикреплен контейнер 8 для сбора исследованных проб пластового флюида, сообщаемый с полостью рабочего корпуса 2 посредством нажимного клапана 6.

В рабочем корпусе 2 перемещается шток 9 с поршнем 10, разделяющими пробоприемную полость корпуса 2 на две части: 11 - нижний отсек для отбора проб пластового флюида из скважины через впускной клапан 12, который управляется электромагнитной катушкой 13, расположенной в полости зазора 3, средний отсек 14 - для приема газовой фракции через перепускной клапан 15, установленный в поршне 10 и управляемый индукционной катушкой 16, размещенной в полости 17 поршня 10. В верхнем отсеке 18, отделенном перегородкой 19, находится приводной механизм управления движением поршня 10, состоящий из редуктора 20, электродвигателя 21 и механизмов реостата 22 с подвижным ползуном 23, синхронно перемещаемого вдоль реостата 22 по мере передвижения поршня 10 и соединенного с ним штока 9 вдоль оси отсека 18. Внутри верхнего отсека 18 находится также индукционная катушка 24, предназначенная для передачи магнитной индукции по штоку 9 на индукционную катушку 16 для управления перепускным клапаном 15.

Кроме того, на перегородке 4 внутри нижнего отсека 11 смонтированы нагревательные элементы 25, предназначенные для подогрева отобранной в нижний отсек 11 пробы пластовой жидкости до нужной температуры ее полной дегазации.

В боковой поверхности нижнего отсека 11 смонтированы акустические преобразователи: излучатель (АК-И) 26 и приемник (АК-П) 27, датчики температуры (Т) 28 и давления (Р) 29.

В боковой поверхности среднего отсека 14 смонтированы датчики температуры 30 и давления 31.

В полости зазора 3 размещены два электронных блока управления 32 и 33, которые предназначены для управления всеми функциональными органами устройства, а также для регистрации основных измеряемых параметров: температуры - Т, давления - Р, объема газа - Vг, объема жидкости - Vж, скорости ультразвуковых колебания (УЗК) - V. Блоки управления 32 и 33 связаны с функциональными органами устройства посредством электрических связей 34 и 35, подведенных к кабельной головке 36.

Электронные блоки управления 32 и 33 всю оперативную информацию о режиме устройства передают через кабельную головку 36 по каротажному кабелю 37 на поверхность, где установлены компьютеризированная панель управления с персональным компьютером 38, откуда после обработки оперативной информации по соответствующим программам, исполнительные команды поступают опять на блоки управления 32 и 33, а с них - на соответствующие исполнительные механизмы (модули) устройства (см. Фиг. 2).

Блок управления 32 предназначен для управления модулем 39 измерения сопротивления, куда входит механизм реостата 22 с подвижным ползуном 23, модулем 40 измерения и стабилизации температуры с датчиками температуры 28 и 30. С блоком управления 32 связаны акустический излучатель 26, и модуль 42 нагревателя, куда входят нагревательные элементы 25.

Блок управления 33 предназначен для управления модулем 43 приемника ультразвуковых колебаний (УЗК), куда входит акустический приемник 27, модулем 44 измерения давления, куда входят датчики давления 29 и 31, модулем 45 управления перепускным клапаном 15 с помощью индукционных катушек 24 и 16, и модулем 46 управления впускным клапаном 12 с электромагнитной катушкой 13.

Устройство с кабельной головкой 36 спускают в скважину на каротажном кабеле 37 и устанавливают против интервала перфорации продуктивного пласта для оценки ГФ в пробе, поступающего из него пластового флюида.

С поверхности, путем подачи управляющего сигнала на блок управления 33, включают электромагнитную катушку 13, приводящую к открытию впускной клапан 12, через который поступают пробы пластового флюида (добываемой продукции) в нижний отсек 11 устройства.

Далее, путем подачи управляющего сигнала на блок управления 32 включают нагреватели 25 для подогрева отобранной пробы до нужной температуры ее полной дегазации.

Известно, что величина ГФ зависит от температуры отбираемого из скважины пластового флюида (О.В. Давыдова. «Влияние температуры на остаточное количество газа в нефти при измерениях» // э/ж. «Нефтегазовое дело», 2013 г., №1, с. 72-75). Причем, чем выше температура пробы, тем меньше в нем остаточного нефтяного газа и, соответственно, меньше ее ГФ.

Указанное обстоятельство использовано для ускорения процесса оценки ГФ пробы, отобранной с помощью скважинного пробоотборника предлагаемой конструкции, путем ее подогрева в пробоотборнике до нужной температуры. Причем, оптимальная температура полной дегазации отобранной пробы заранее определяется для каждого продуктивного пласта на конкретном месторождении нефти в лабораторных условиях соответствующего НГДУ.

На следующем этапе, с целью полной дегазации поступившей в отсек 11 пробы пластового флюида, подают с поверхности от панели управления 38 по каротажному кабелю 37 энергию на электродвигатель 21 и с помощью редуктора 20 начинают перемещение штока 9 и соединенного с ним поршня 10 в верхнее положение, контролируя с помощью датчиков 28 и 29 температуру и давление в нижнем отсеке 11 устройства, а с помощью датчиков 30 и 31 - температуру и давление в среднем отсеке 14 рабочей камеры 2 устройства.

Одновременно контролируют момент выравнивания давления между нижним 11 и средним 14 отсеками устройства по величине сопротивления отчитываемого с реостата 22. После фиксации момента выравнивания давления в нижнем 11 и среднем 14 отсеках устройства с помощью реверсного механизма (на Фиг. 1 не показан) включают обратное вращение электродвигателя 21, что приводит к опусканию поршня 10 в крайнее нижнее положение до его контакта с жидкой фазой отобранной пробы находящейся в нижнем отсеке 11 устройства.

Для того, чтобы газовая фаза, выделившаяся из отобранной пробы, (на Фиг. 1 не показано) свободно проходила в средний отсек 14, с помощью блока управления 33 по команде с поверхности путем подачи энергии на индукционную катушку 24 для передачи магнитной индукции по штоку 9 на индукционную катушку 16, открывают перепускной клапан 15.

После контакта поршня 10 с поверхностью жидкой фазы отобранной пробы находящейся в нижнем отсеке 11 устройства, электродвигатель 21 автоматически отключается.

После остановки поршня 10 в крайнем нижнем положении производят отсчет величины сопротивления на реостате 22, а затем по разности отчетов величины сопротивления полученной при выравнивании давления в нижнем 11 и среднем 14 отсеках пробоприемной камеры и при контакте поршня 10 с поверхностью жидкой фазы отобранной пробы определяют по показаниям реостата 22 полный объем, выделившегося из отобранной пробы газа - Vг заполнившего средний отсек 14 и полный объем жидкой фазы - Vж, заполнивший нижний отсек 11.

Затем, по команде с поверхности поданной на блоки управления 32 и 33 запускают с помощью акустического излучателя 26 и приемника 27 режим прозвучивания жидкой фазы отобранной пробы, находящейся в нижнем отсеке 11 рабочей камеры 2 устройства и определяют значения скорости звука - V, а по ней: с использованием известных палеточных зависимостей, определяют плотность жидкой фазы отобранного пластового флюида - ρж.

На основании полученных данных наземное управляющее вычислительное устройство 38 определяет в режиме реального времени величину ГФ согласно известной формулы (1):

где:

ρж - плотность жидкой фазы отобранного пластового флюида, т/м3,

Vж - полный объем жидкой фазы, м3,

Vг - полный объем газовой фазы, м3,

ГФ - величина газового фактора, м3/т.

Затем, после выполнения необходимого цикла измерения ГФ по команде с поверхности запускается цикл очистки нижнего 11 и среднего 14 отсеков от выделавшихся газовой и жидкой фаз отобранной пробы, сначала путем перемещения поршня 10 с помощью приводного механизма 21 в крайнее нижнее положение, что приводит к открыванию нажимного клапана 6 и выдавленного жидкой фазы отобранной пробы в сборный контейнер 8.

Затем, путем включения реверсивного механизма (на Фиг. 1 не показан) поршень 10 с помощью приводного механизма 21 начинает подниматься в крайнее верхнее положение с одновременным открыванием перепускного клапана 15 по команде с блока управления 33, благодаря чему попутный газ, выделившийся из жидкой фазы отобранной пробы, находившейся в нижнем отсеке 11, перемещается из надпоршневого пространства в подпоршневое. При достижении поршнем 10 крайнего верхнего положения (на Фиг. 1 не показано) перепускной клапан 15 по команде с блока управления 33 закрывается и одновременно включается приводной механизм 21, который приводит к опусканию поршня 10 и выдавливанию попутного газа, находящегося в подпоршневом пространстве через нажимной клапан 6 в сборный контейнер 8. При достижении поршнем 10 крайнего нижнего положения (на Фиг. 1 не показано) пробоотборная рабочая камера 11 готова к приему очередной пробы пластового флюида из скважины.

Следует заметить, что в известном патенте №2392430 приведено описание ультразвукового устройства, но не раскрыто его функциональное назначение, которое может заключаться в прямом воздействии на пробу флюида ультразвуковыми волнами для равномерного расслоения твердых частиц, концентрацию которых определяют с помощью оптического датчика.

Задача экспресс-оценки ГФ нефтегазовых скважин без подъема отобранных проб на поверхность в заявляемом изобретении решается за счет создания скважинного пробоотборника, конструкция которого позволяет оперативно исследовать многократно отобранные пробы пластового флюида, содержащего нефть и газ, с учетом влияния температуры на остаточное количество газа в нефти при измерениях, что позволяет с высокой точностью получить в режиме «online» исходные величины для дальнейшего расчета ГФ в автоматическом режиме.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 20.
20.08.2014
№216.012.ecdf

Способ повышения продуктивности добывающих скважин

Изобретение относится к нефтяной промышленности и может найти применение при добыче нефти штанговым насосом. Техническим результатом является повышение интенсивности извлечения нефти и увеличение продуктивности призабойной зоны за счет увеличения амплитуды упругих колебаний в пласте. Способ...
Тип: Изобретение
Номер охранного документа: 0002526447
Дата охранного документа: 20.08.2014
10.04.2015
№216.013.370c

Способ разработки углеводородных месторождений

Изобретение относится к нефтяной и газовой промышленности и может быть использовано в технологии возврата попутного газа для поддержания пластового давления в продуктивном пласте. Задача изобретения - снижение трудозатрат при осуществлении технологии закачки попутного газа в нефтяные скважины...
Тип: Изобретение
Номер охранного документа: 0002545580
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46d7

Способ разработки нефтяной залежи

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных залежей с применением заводнения. Задача изобретения - снижение трудоемкости контроля за процессом заводнения нефтяной залежи при закачке вытесняющего агента в нагнетательные скважины. По способу...
Тип: Изобретение
Номер охранного документа: 0002549639
Дата охранного документа: 27.04.2015
10.08.2015
№216.013.6c79

Способ исследования образцов горных пород

Изобретение относится к технике горного дела, добыче полезных ископаемых, в частности к устройствам для изучения физико-механических свойств горных пород, и может быть использовано в геологии, горной, газовой и нефтяной промышленности для расчета предельной величины давления гидроразрыва...
Тип: Изобретение
Номер охранного документа: 0002559327
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6eff

Способ ввода в эксплуатацию продуктивных коллекторов в скважинах на поздней стадии разработки

Изобретение относится к области нефтедобывающей промышленности, к средствам щадящего вскрытия продуктивного интервала пласта и вызова из него притока нефти. Способ ввода в эксплуатацию продуктивных пластов в скважинах на поздней стадии разработки содержит вскрытие продуктивных пластов сверлящей...
Тип: Изобретение
Номер охранного документа: 0002559985
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72f3

Способ геоэлектроразведки и устройство для его осуществления

Изобретение относится к электроразведочным исследованиям. Технический результат: снижение трудозатрат на проведение измерений и повышение информативности измерений при экспресс-контроле за динамикой извлечения высоковязкой нефти и битума вдоль профиля горизонтальных скважин в реальном масштабе...
Тип: Изобретение
Номер охранного документа: 0002560997
Дата охранного документа: 20.08.2015
10.05.2016
№216.015.3aa2

Способ воздействия на процесс консолидации цементного раствора за обсадной колонной в горизонтальных скважинах

Изобретение относится к области цементирования обсадных колонн (ОК) нефтяных и газовых скважин и промыслово-геофизических методов контроля качества. Техническим результатом является повышение качества цементирования горизонтальных скважинза счет своевременного обнаружения мест «защемления»...
Тип: Изобретение
Номер охранного документа: 0002583382
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3f32

Устройство для селективной изоляции продуктивного пласта при цементировании обсадных колонн

Изобретение относится к бурению нефтяных и газовых скважин и может быть использовано при цементировании эксплуатационных обсадных колонн. Технический результат - снижение трудозатрат и повышение технологичности процесса регулирования отбора пластового флюида после цементирования обсадной...
Тип: Изобретение
Номер охранного документа: 0002584702
Дата охранного документа: 20.05.2016
13.01.2017
№217.015.6a0e

Способ выбора объектов в пробуренных нефтегазовых скважинах для проведения гидроразрыва пласта

Изобретение относится к горному делу. В частности, предложен способ выбора объектов в пробуренных нефтегазовых скважинах для проведения гидроразрыва пласта на месторождениях с участками с невыработанными - остаточными «целиками» нефти, включающий этапы, на которых: исследуют бурящиеся скважины...
Тип: Изобретение
Номер охранного документа: 0002592919
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6a43

Способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины

Изобретение относится к средствам извлечения геотермальной энергии из продукции нефтегазовых скважин и может использоваться в качестве альтернативных источников энергии. Технический результат заключается в повышении эффективности использования геотермальной энергии пластовых вод, сопутствующих...
Тип: Изобретение
Номер охранного документа: 0002592913
Дата охранного документа: 27.07.2016
+ добавить свой РИД