×
08.09.2019
219.017.c934

Результат интеллектуальной деятельности: Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе

Вид РИД

Изобретение

Аннотация: Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования. Описан жидкий органический носитель водорода, состоящий из моно-, би- и трициклических ароматических, парафиновых и нафтеновых углеводородов, отличающийся тем, что суммарное содержание парафиновых и нафтеновых углеводородов не превышает 40% масс., суммарное содержание моно-, би- и трициклических ароматических углеводородов не менее 60% масс., а температурные пределы выкипания фракции составляют 160-360°С. Также описан способ получения жидкого органического носителя водорода глубокой гидроочистки легкого газойля каталитического крекинга и водородный цикл жидкого органического носителя водорода. Технический результат: повышение эффективности технологии получения ароматического концентрата. 3 н.п. ф-лы, 2 табл., 16 пр.

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования, и представляющих собой смесь моно-, би- и трициклических ароматических соединений, которые могут быть использованы в качестве аккумуляторов водорода для энергетических установок в промышленных масштабах, для автономных энергетических систем, включая наземные, водные и воздушные транспортные средства, стационарных объектов наземного и космического базирования, других устройств, оснащенных водородными двигателями, а также при создании жидких органических носителей водорода (ЖОНВ).

Существуют различные подходы к хранению водорода, например, в компримированном состоянии при высоком давлении, в жидком виде, физически адсорбированном пористыми материалами состоянии, в форме гидридов металлов и химических гидридов. Использование сжатого водорода вызывает опасения по поводу безопасности и стоимости. Криогенный водород имеет высокую плотность и приемлем при хранении в больших хранилищах. Однако для использования энергии транспортом существенны затраты на сжижение, есть проблемы с последующим испарением. Гидриды металлов имеют недостатки в области термодинамики реакции, малую скорость реакции или низкую емкость по водороду.

Ионные жидкости, например, простые соли 1-алкил(арил)-3-метилимидазолия N-бис(трифторметансульфонил)имидата обладают очень низким давлением паров, высокой плотностью и термической стабильностью, и могут обратимо присоединять 6-12 атомов водорода в присутствии классических катализаторов. Однако весьма существенным недостатком этих носителей водорода является их высокая стоимость.

Жидкие органические носители водорода являются одними из перспективных аккумуляторов этого энергоносителя, способны накапливать 5-8 мас. %, участвуют в обратимых реакциях гидрирования-дегидрирования при умеренных температурах, используемые гетерогенные катализаторы хорошо изучены, относительно недорогии имеют длительный рабочий цикл. Сами объекты, как правило, совместимы с существующей инфраструктурой хранения и распространения углеводородных топлив и могут быть получены из коммерчески доступных веществ.

Задачей настоящего изобретения является создание жидкого органического носителя водорода из доступного сырья (легкого газойля каталитического крекинга) с использованием хорошо изученных процессов переработки нефти.

Известен способ хранения водорода [RU 2333885. С2. Тарасов А.Л., Кустов Л.М., Кустов А.Л., Богдан В.И. Способ хранения водорода путем осуществления каталитических реакций гидрирования-дегидрирования ароматических субстратов под воздействием СВЧ (ВЧ)-излучения], в котором используются обратимые реакции гидрирования-дегидрирования ароматических соединений, интенсифицируемые под воздействием СВЧ (ВЧ)-излучения. Недостатком данного способа является требование к материалу каталитического реактора - он не должен поглощать СВЧ (ВЧ)-излучение, что исключает использование металлов. Использование других конструкционных материалов (стекло, кварц, керамика или другие композиционные материалы) удорожает процесс и ограничивает области применения носителей водорода.

Наиболее перспективным способом хранения водорода является использование пар органических соединений, способных превращаться в присутствии катализаторов в результате протекания реакций гидрирования-дегидрирования. Примером таких пар являются бензол-циклогексан и нафталин-декалин [Jpn. Patent No. 198469 А, 2001], а также антрацен-пергидроантрацен, фенантрен-пергидрофенантрен. Однако использование таких пар, предварительно выделенных соединений, в крупнотоннажных процессах обходится крайне дорого, если вообще возможно, что является недостатком данных носителей водорода.

Известен жидкий органический носитель водорода [K. , R. Aslam, A. Fischer, K. Stark, P. Wasserscheid, W. Arlt. Experimental assessment of the degree of hydrogen loading for the dibenzyl toluene based LOHC system // International Journal of hydrogen energy, V. 41, Is. 47, P. 22097-22103], основанный на использовании дибензилтолуола. Однако использование реактивных (специально синтезированных ароматических соединений) обходится дорого, что является недостатком данного носителя водорода.

Предложен состав жидкой при комнатной температуре смеси, содержащей два или более соединений, выбранных из изомеров бензилтолуола и/или дибензилтолуола в каталитических процессах для связывания водорода и/или его выделения [US 20150266731 A1, "Liquid compounds and method for the use there of as hydrogen stores", A. Boesmann, P. Wasserscheid, N. Brueckner, J. Dungs. Pub. No.: US 2015/0266731 A1, Pub. Data: Sep 24, 2015]. Недостатком данного жидкого носителя водорода является его невысокая емкость по водороду на единицу массы, т.к. используемые ароматические соединения представляют собой моноциклы, соединенные алкильными цепочками, которые имеют относительно низкую плотность. Данный состав является наиболее близким к предлагаемому, однако предлагаемый составосновывается на сырье, которое производится нефтеперерабатывающей промышленностью в огромных количествах, а именно на фракции или экстракте ароматических углеводородов, выделенных из глубоко гидроочищенного ЛГКК. По химическому составу предлагаемый ЖОНВ также принципиально отличается от запатентованного в [US 20150266731 А1, "Liquid compounds and method for the use there of as hydrogen stores", A. Boesmann, P. Wasserscheid, N. Brueckner, J. Dungs. Pub. No.: US 2015/0266731 A1, Pub. Data: Sep 24, 2015].

Предлагаемые результаты можно реализовать при проведении реакции в проточном реакторе. Можно рассчитать поглощение водорода исходя из содержания ароматических углеводородов в исходном сырье и в продукте гидрирования, однако в данном случае на входе в реактор и выходе из сепаратора стоят детекторы mass-flow, которые позволяют по разнице непосредственно определить выделение или поглощение водорода.

Техническим результатом настоящего изобретения является жидкий органический носитель водорода, способ его получения и водородный цикл жидкого органического носителя водорода.

Технический результат достигается тем, что способ получения жидкого органического носителя водорода включает глубокую гидроочистку легкого газойля каталитического крекинга до остаточного содержания серы менее 10 ppm с последующим фракционированием или с последующей экстракцией ароматических соединений N-метилпирролидоном, жидкий органический носитель водорода, полученный по этому способу, состоит из моно-, би- и трициклических ароматических, парафиновых и нафтеновых углеводородов, причем суммарное содержание парафиновых и нафтеновых углеводородов не превышает 40% масс., суммарное содержание моно-, би- и трициклических ароматических углеводородов не менее 60% масс., температурные пределы выкипания фракции ЖОНВ составляют 160-360°С, а водородный цикл, реализуемый с использованием полученного жидкого органического носителя, включает связывание водорода при температурах 60-160°С и его высвобождение из жидкого органического носителя водорода при температурах 320-350°С в присутствии гетерогенного катализатора, причем гетерогенный катализатор включает носитель - Al2O3 и нанесенный на него активный металл, выбранный из ряда Pt, Pd, их смеси, или Ni.

Поставленная задача решается тем, что ЛГКК с высоким содержанием ароматических углеводородов подвергается гидроочистке в жестких условиях (высокое давление, высокая температура) с целью удаления серы при минимальном гидрировании ароматических углеводородов. Полученный гидрогенизат стабилизируется путем отгонки от него H2S, углеводородных газов и бензина - отгона. По первому варианту из стабильного гидрогенизата выделяют фракцию 160-360°С для дальнейшего использования в качестве жидкого органического носителя водорода. По второму варианту из стабильного гидрогенизата путем экстракции N-метилпирролидоном извлекается концентрат моно-, би- и трициклических ароматических углеводородов, который используется как жидкий органический носитель водорода. Гетерогенный катализатор включает носитель - Al2O3 и нанесенный на него активный металл, выбранный из ряда Pt и/или Pd в количестве от 0,1 до 2,0% масс., или Ni в количестве 6-12% масс.

Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л. В этих условиях происходит увеличение количества моноциклических ароматических углеводородов [Н.М. Максимов, А.В. Моисеев, Н.Н. Томина, А.А. Пимерзин. Химические превращения компонентов легкого газойля каталитического крекинга в процессе гидроочистки на алюмокобальтмолибденовом, алюмоникельвольфрамовом катализаторах // ХТТМ, №6, 2017, с. 38-41]. Характеристика исходного ЛГКК, фракции глубоко гидроочищенного ЛГКК и концентрата моно-, би- и трициклических ароматических углеводородов приведена в таблице 1.

Гидроочищенный ЛГКК стабилизирован. Эксперименты по гидрированию-дегидрированию фракции и экстракта проводились на этой же лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60-160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320-350°С. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе.

Катализаторы, содержащие платину и/или палладий, готовили адсорбционной пропиткой носителя из водных растворов в присутствии конкурента (уксусной кислоты) в количестве 0,4-0,6 мл ледяной СН3СООН на 10 мл пропиточного раствора. Объем пропиточного раствора был постоянным, и составлял 10 мл. Носитель, предварительно прокаленный γ-Al2O3, в количестве 5 г, заливался пропиточным раствором на 24 часа. После стадии сорбции пропиточный раствор сливался с готового катализатора. Никель наносили на поверхность носителя из водного раствора гексагидрата нитрата никеля по влагоемкости. Катализаторы сушили при 80, 100 и 110°С. Активация (восстановление) катализатора по описанной выше программе проводилась непосредственно в реакторе.

Состав катализаторов и результаты гидрирования-дегидрирования в объемах поглощенного и выделенного водорода, приведены в таблице 2.

ПРИМЕРЫ

Пример 1. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,60 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,14 г водорода на 100 г ЖОНВ.

Пример 2. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1, часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,57 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,13 г водорода на 100 г ЖОНВ.

Пример 3. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья -1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 350°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,68 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,63 г водорода на 100 г ЖОНВ.

Пример 4. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание МоО3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении ОД МПа и температуре 340°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,52 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 2,75 г водорода на 100 г ЖОНВ.

Пример 5. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320°С, на Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,59 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,09 г водорода на 100 г ЖОНВ.

Пример 6. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,37 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 1,99 г водорода на 100 г ЖОНВ.

Пример 7. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,52 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 2,81 г водорода на 100 г ЖОНВ.

Пример 8. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание МоО3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и отбирали фракцию 160-360°С. Эксперименты по гидрированию-дегидрированию фракции проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 350°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,65 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,52 г водорода на 100 г ЖОНВ.

Пример 9. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,05 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,47 г водорода на 100 г ЖОНВ.

Пример 10. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,02 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,57 г водорода на 100 г ЖОНВ.

Пример 11. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 350°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,12 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,96 г водорода на 100 г ЖОНВ.

Пример 12. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Pt-Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,04 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,43 г водорода на 100 г ЖОНВ.

Пример 13. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320°С, на Pd/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,59 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 3,09 г водорода на 100 г ЖОНВ.

Пример 14. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание МоО3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 60°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 320°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,85 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 4,53 г водорода на 100 г ЖОНВ.

Пример 15. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 120°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 340°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 0,98 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,27 г водорода на 100 г ЖОНВ.

Пример 16. Гидроочистка ЛГКК проведена на лабораторной проточной установке. Условия проведения процесса гидроочистки: катализатор СоМо/Al2O3, содержание MoO3 - 20% масс., содержание СоО - 3,5% масс., загрузка - 20 мл частиц размером 0,5-0,25 мм, температура в реакторе 400°С, давление в реакторе 1,0 МПа, объемная скорость подачи сырья - 1,0 ч-1, соотношение Н2 : сырье = 200 нл/л.

Гидроочищенный ЛГКК стабилизировали и подвергали экстракции ароматических соединений N-метилпирролидоном. Эксперименты по гидрированию-дегидрированию экстракта проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 160°С и ОСПС = 4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 350°С, на Ni/Al2O3 катализаторе. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4,5 по массе. В процессе гидрирования фракция поглотила 1,09 г водорода на 100 г ЖОНВ. В процессе последующего дегидрирования фракция выделила 5,91 г водорода на 100 г ЖОНВ.


Жидкий органический носитель водорода, способ его получения и водородный цикл на его основе
Источник поступления информации: Роспатент

Показаны записи 71-80 из 191.
13.10.2018
№218.016.91f9

Система автоматического управления аппаратом воздушного охлаждения газа

Изобретение относится к аппаратам воздушного охлаждения газа и может использоваться, в частности, для охлаждения газа после компримирования на компрессорных станциях магистральных газопроводов. Система автоматического управления аппаратом воздушного охлаждения газа, содержащая блок задания...
Тип: Изобретение
Номер охранного документа: 0002669444
Дата охранного документа: 11.10.2018
21.10.2018
№218.016.94a3

Способ выявления сопротивления растяжению арматуры железобетонного элемента в условиях пожара

Изобретение относится к области пожарной безопасности зданий, в частности к огнестойкости железобетонных элементов конструкций здания, и касается исследования и анализа качества растянутой арматуры с помощью тепловых средств при совместном воздействии нагрузки и высокой температуры стандартного...
Тип: Изобретение
Номер охранного документа: 0002670239
Дата охранного документа: 19.10.2018
23.10.2018
№218.016.950b

Устройство для извлечения элементов труб из отработавших трубопроводов

Изобретение относится к утилизации металла труб из отработавших. Устройство для извлечения элементов труб из отработавших трубопроводов содержит корпус с передней ступенью с наружным диаметром D, оснащенной узлом для закрепления вытяжного троса, переходником и задней ступенью с внутренним...
Тип: Изобретение
Номер охранного документа: 0002670318
Дата охранного документа: 22.10.2018
09.11.2018
№218.016.9bb0

Способ оценки огнестойкости многопустотной преднапряженной железобетонной плиты

Изобретение относится к области пожарной безопасности зданий - огнестойкости их конструкций. Сущность изобретения заключается в том, что испытание многопустотной преднапряженной многопустотной железобетонной плиты проводят без разрушения, по комплексу единичных показателей качества. Для этого...
Тип: Изобретение
Номер охранного документа: 0002671910
Дата охранного документа: 07.11.2018
21.11.2018
№218.016.9f32

Способ сборки бурового шарошечного долота корпусного типа

Предлагаемое изобретение относится к буровой технике, а именно к способу сборку бурового шарошечного долота корпусного типа. Технический результат заключается в повышении точности сборки секций долота за счет исключения их радиального биения. До сборки секций корпус долота завинчивается...
Тип: Изобретение
Номер охранного документа: 0002672702
Дата охранного документа: 19.11.2018
28.11.2018
№218.016.a133

Устройство аналогового датчика реактивной составляющей переменного тока

Устройство аналогового датчика реактивной составляющей переменного тока относится к измерительной техники и может быть применено в качестве датчика реактивной составляющей переменного тока при автоматическом или ручном управлении реактивной мощностью узла нагрузки системы электроснабжения....
Тип: Изобретение
Номер охранного документа: 0002673335
Дата охранного документа: 26.11.2018
30.11.2018
№218.016.a23b

Способ получения 4-метил-1-нитропентена-1

Изобретение относится к однореакторному способу получения 4-метил-1-нитропентена-1 формулы I. Способ осуществляют путем взаимодействия нитрометана II с изовалериановым альдегидом III в присутствии карбоната натрия и катализатора межфазного переноса с последующей обработкой продукта реакции...
Тип: Изобретение
Номер охранного документа: 0002673461
Дата охранного документа: 27.11.2018
02.12.2018
№218.016.a285

Способ приготовления хлеба безопарным методом

Изобретение относится к пищевой промышленности. Способ приготовления теста предусматривает стадии смешивания воды, муки, дрожжевой суспензии, соли и питьевой воды, брожения теста, разделки, расстойки и выпечки тестовых заготовок. Для приготовления теста используют питьевую воду, обработанную...
Тип: Изобретение
Номер охранного документа: 0002673742
Дата охранного документа: 29.11.2018
07.12.2018
№218.016.a482

Способ шлифования сферического торца на конических роликах

Изобретение относится к области машиностроения и может быть использовано в подшипниковой промышленности при обработке сферических торцов конических роликов. Ролики располагают между торцами жесткого и мягкого дисков, установленных соосно и вращающихся вокруг своих осей. Базирование каждого...
Тип: Изобретение
Номер охранного документа: 0002674187
Дата охранного документа: 05.12.2018
07.12.2018
№218.016.a4bd

Автоматизированное устройство механотерапии височно-нижнечелюстного сустава

Изобретение относится к медицине. Устройство механотерапии височно-нижнечелюстного сустава состоит из головного шлема, упора подбородка, направляющей, с которой подвижно взаимодействует упор подбородка и крепления. Устройство механотерапии снабжено системой автоматического управления,...
Тип: Изобретение
Номер охранного документа: 0002674236
Дата охранного документа: 05.12.2018
Показаны записи 41-43 из 43.
20.04.2023
№223.018.4b4c

Смеси азоторганических соединений, содержащих ароматические c-c-циклы, как жидкий органический носитель водорода и водородный цикл на его основе

Изобретение относится к жидкому органическому носителю водорода, представляющему собой смесь азоторганических соединений, содержащих ароматические С-С-циклы, способных в присутствии катализаторов присоединять атомы водорода, имеющую более низкие тепловые эффекты реакций...
Тип: Изобретение
Номер охранного документа: 0002773218
Дата охранного документа: 31.05.2022
21.05.2023
№223.018.6995

Способ пропитки носителя катализатора гидроочистки

Изобретение относится к области производства катализаторов переработки углеводородного сырья. Описан способ пропитки носителя катализатора гидроочистки пропиточным раствором, в состав которого входят оксиды молибдена и кобальта, осуществляющийся в емкостном пропитывателе, при котором избыточный...
Тип: Изобретение
Номер охранного документа: 0002794669
Дата охранного документа: 24.04.2023
23.05.2023
№223.018.6c05

Способ получения реактивных и дизельных топлив из смеси растительного и нефтяного сырья

Изобретение описывает способ получения реактивных и компонентов дизельных топлив путем гидрогенизационной переработки сырья, состоящего из смеси дистиллята растительного происхождения с дистиллятом нефтяного происхождения при соотношении 5,0-40,0:95,0-60,0% масс. соответственно, при этом в...
Тип: Изобретение
Номер охранного документа: 0002737724
Дата охранного документа: 02.12.2020
+ добавить свой РИД