×
06.09.2019
219.017.c7d3

Результат интеллектуальной деятельности: Устройство для определения длины распространения поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения

Вид РИД

Изобретение

Аннотация: 27 Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства для определения длины распространения поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство содержит источник излучения, цилиндрический фокусирующий объектив, твердотельный образец со способной направлять ПЭВ плоской прямоугольной гранью, элемент преобразования излучения источника в коллимированный пучок ПЭВ, лучеразделитель, расщепляющий пучок на два вторичных пучка, и два фотоприемника, размещенных у освещаемых вторичными пучками участков ребер грани. Элемент преобразования изготовлен в форме цилиндрического сегмента, примыкающего одним из ребер выпуклой поверхности к грани образца. Лучеразделитель выполнен в виде плоской светоделительной пластинки, установленной на грани образца и ориентированной перпендикулярно к ней таким образом, что пластинка пересекает трек ПЭВ, исходящих от элемента преобразования, под углом 45°, причем один из фотоприемников размещен в плоскости падения излучения, а второй - в плоскости, перпендикулярной к ней. Технический результат заключается в повышении соотношения сигнал/шум и упрощении процедуры измерений. 1 ил.

Изобретение относится к бесконтактным исследованиям поверхности металлов и полупроводников оптическими методами, а именно - к определению спектров поглощения, как самой поверхности, так и ее переходного слоя путем измерения длины распространения поверхностной электромагнитной волны (ПЭВ), направляемой этой поверхностью, в инфракрасном диапазоне (ИК) спектра и может найти применение в исследованиях физико-химических процессов на поверхности твердого тела, в ИК спектроскопии окисных и адсорбированных слоев, в сенсорных устройствах и контрольно-измерительной технике нанотехнологий.

Спектроскопия поверхности твердого тела - одна из основных областей применения ПЭВ [1, 2]. В ИК-диапазоне применяют, главным образом, абсорбционную ПЭВ-спектроскопию, предполагающую измерение длины распространения ПЭВ L, достигающую в этом диапазоне 1000λ (где λ - длина волны излучения, возбуждающего ПЭВ) и которая, поэтому, может быть измерена непосредственно. Причем, так как расстояние взаимодействия излучения с поверхностью в этом методе макроскопическое, то его чувствительность на много превышает чувствительность иных оптических методов контроля поверхности в ИК-диапазоне. Более того, в терагерцовой (ТГц) части ИК-диапазона метод ПЭВ-спектроскопии в настоящее время не имеет альтернативы при исследовании проводящей поверхности, ввиду близости коэффициента отражения металлов на этих частотах к 100% [3].

Известно устройство для исследования тонких слоев методом абсорбционной ПЭВ-спектроскопии в ТГц области спектра, содержащее источник лазерного излучения, твердотельный образец с плоской поверхностью, объединенные в один элементы преобразования излучения источника в ПЭВ и обратно, выполненные в виде прозрачной плоскопараллельной пластины со скошенным торцом, обращенной основанием к образцу, внедренной в поле ПЭВ и расположенной параллельно поверхности образца на расстоянии не меньше 10λ, причем размер пластины в плоскости падения не меньше длины распространения ПЭВ, а также - фотоприемное устройство, выполненное в виде линейки фото детекторов и размещенное на верхней грани пластины [4]. Основным недостатком такого устройства является искажение результатов измерений вследствие внедрения пластины в поле ПЭВ, что приводит к увеличению потерь энергии ПЭВ на излучение и, как следствие, к уменьшению длины распространению ПЭВ по сравнению с невозмущенной поверхностью образца.

Известно устройство для определения длины распространения инфракрасных поверхностных плазмонов (ПП) - разновидности ПЭВ - по реальной поверхности, способное выполнять измерение за время одного импульса излучения источника и содержащее источник излучения, поляризатор, цилиндрический фокусирующий объектив, образец с плоской гранью, направляющей ПП, призменный элемент преобразования излучения источника в ПП и обратно, два одинаковых фотоприемных комплекта, размещенных вне поля ПП и состоящих из регулируемой диафрагмы, собирающей линзы и фотодетектора, установленного в фокусе линзы и подключенного к измерительному прибору, каждый [5]. Основным недостатком этого устройства является зависимость результатов измерений от степени однородности поверхности, поскольку оно адекватно функционирует только при условии статистически равномерного распределения неоднородностей по треку ПП; кроме того, для устройства характерно низкое соотношение сигнал/шум в случае поверхности с малыми неоднородностями, когда радиационные потери ПП невелики (по сравнению с джоулевыми потерями).

Наиболее близким по технической сущности к заявляемому устройству является устройство, реализующее способ определения коэффициента затухания ПЭВ ИК диапазона за время одного импульса излучения и содержащее источник излучения, твердотельный образец с плоской прямоугольной гранью, способной направлять ПЭВ, элемент преобразования излучения источника в ПЭВ и два фотоприемника, размещенных у кромок грани и подключенных к раздельным измерительным приборам [6].

Техническим результатом, на достижение которого направлено изобретение, является повышение соотношения сигнал/шум и упрощение процедуры измерений.

Сущность изобретения заключается в том, что в устройстве для определения длины распространения ПЭВ инфракрасного диапазона за время одного импульса излучения, содержащем источник излучения, цилиндрический фокусирующий объектив, твердотельный образец со способной направлять ПЭВ плоской прямоугольной гранью, элемент преобразования излучения источника в коллимированный пучок ПЭВ, лучеразделитель, расщепляющий пучок на два вторичных пучка, и два фотоприемника, размещенных у освещаемых вторичными пучками участков ребер грани и подключенных к раздельным измерительным приборам, элемент преобразования изготовлен в форме цилиндрического сегмента, примыкающего одним из ребер выпуклой поверхности к грани образца, а лучеразделитель выбран в виде плоской светоделительной пластинки, установленной на грани и ориентированную перпендикулярно к ней таким образом, что пластинка пересекает трек ПЭВ, исходящих от элемента преобразования, под углом 45°, причем один из фотоприемников размещен в плоскости падения излучения, а второй - в плоскости, перпендикулярной к ней.

Повышение соотношения сигнал/шум в процессе измерений обеспечивается заменой двух элементов схемы устройства-прототипа на их аналоги с более низким уровнем шума, обусловленного паразитными приповерхностными объемными волнами. Во-первых, элемент преобразования излучения источника в пучок ПЭВ, изготовленный в виде планарной дифракционной решетки на волноведущей грани образца, предложено заменить на цилиндрический сегмент, примыкающий одним ребер его выпуклой поверхности к направляющей ПЭВ грани образца. Такой элемент преобразования позволяет не только трансформировать объемную волну в поверхностную [7], но и эффективно экранирует (горизонтом своей выпуклой поверхности) фотоприемник от паразитных объемных волн, порождаемых при дифракции излучения источника на свободном ребре его выпуклой поверхности [8]. Во-вторых, в качестве лучеразделителя предложено использовать плоскую светоделительную пластинку вместо уголкового зеркала, отражающие грани которого перпендикулярны к поверхности образца и образуют ребро, проходящее через центр исходного пучка ПЭВ. Вследствие дифракции пучка на ребре зеркала (в устройстве-прототипе) образуется веер паразитных приповерхностных объемных волн, засвечивающих фотоприемники и порождающих в них большой шумовой фототок. При делении же пучка с помощью пластинки (в заявляемом устройстве) интенсивность паразитных волн значительно меньше, чем при использовании зеркала [9], что и позволяет снизить уровень шума фототока в обоих приемниках.

Упрощение процедуры измерений достигается в результате устранения необходимости установки лучеразделителя на грани образца таким образом, чтобы энергии обоих вторичных пучков ПЭВ были строго одинаковы. В устройстве-прототипе это условие выполняется путем прецизионного перемещения уголкового зеркала в плоскости, перпендикулярной плоскости падения исходного пучка ПЭВ. В заявляемом же устройстве нет необходимости выполнять выше упомянутое условие, поскольку длину распространения ПЭВ рассчитывают путем нахождения отношения интенсивностей прошедшего (через пластинку) и отраженного (пластинкой) пучков ПЭВ, обе из которых пропорциональны интенсивности исходного пучка.

На чертеже приведена схема (вид сверху) заявляемого устройства, где 1 - источник р-поляризованного монохроматического излучения, 2 - цилиндрический фокусирующий объектив; 3 - элемент преобразования излучения источника 1 в пучок ПЭВ, имеющий форму цилиндрического сегмента, выпуклая поверхность которого способна направлять ПЭВ; 4 - плоская прямоугольная грань образца, к одному из ребер которой примыкает своей выпуклой поверхностью элемент 3; 5 - плоская светоделительная пластинка, установленная на грани 4 и ориентированная перпендикулярно к ней таким образом, что пересекает пучок ПЭВ, исходящих от элемента 3, под углом 45°; 6 - фотоприемник, примыкающий к ребру грани 4, освещаемому прошедшим через пластинку 5 пучком ПЭВ; 7 - измерительный прибор, подключенный к приемнику 6; 8 - фотоприемник, примыкающий к ребру грани 4, освещаемому отраженным от пластинки 5 пучком ПЭВ; 9 - измерительный прибор, подключенный к приемнику 8.

Заявляемое устройство работает следующим образом. Излучение источника 1 падает на объектив 2 и фокусируется им на свободное ребро цилиндрической поверхности элемента 3. Вследствие дифракции на этом ребре излучение с некоторой эффективностью преобразуется в пучок ПЭВ [8], направляемый выпуклой поверхностью элемента 3. Дойдя до противоположного ребра цилиндрической поверхности элемента 3, пучок ПЭВ переходит на плоскую грань 4 образца. Пройдя по ней в плоскости падения излучения расстояние х1, исходный пучок ПЭВ достигает светоделительной пластинки 5. На ней исходный пучок разделяется на два вторичных пучка: прошедший через пластинку 5 и отраженный от нее. Прошедший пучок, пройдя расстояние х2, достигает ребра грани 4 и поглощается фотоприемником 6, который продуцирует измеряемый прибором 7 сигнал IT=I0⋅Т⋅ехр[-α⋅(х1+x2)], где I0 - сигнал, который порождал бы фотоприемник при размещении на стыке элемента 3 и грани 4; Т - коэффициент пропускания пластинки 5 на длине волны излучения источника 1; α - коэффициент затухания ПЭВ. Пучок, отраженный пластинкой 5, пройдя расстояние х3, достигает другого ребра грани 4 и поглощается фотоприемником 8, который продуцирует измеряемый прибором 9 сигнал IR=I0⋅R⋅ехр[-α⋅(х13)], где R - коэффициент отражения излучения источника 1 пластинкой 5. Тогда, располагая результатами измерений значений IT и IR, а также зная расстояния х2 и х3, можно рассчитать длину распространения ПЭВ L по формуле, получаемой из отношения IT/IR:

где Т и R - предварительно измеренные значения коэффициентов пропускания и отражения пластинки 5 при угле падения 45°.

В качестве примера применения заявляемого устройства рассмотрим возможность определения с его помощью длины распространения описанной в прототипе ПЭВ, которая генерируется на поверхности алюминиевого образца, размещенного в воздухе, лазерным излучением с λ=110 мкм и длительностью импульсов 3 мкс [6]. В качестве элемента преобразования 3 выберем цилиндрический сегмент, являющийся одной восьмой частью стеклянного диска толщиной 25 мм и радиусом кривизны равным 60 мм; выпуклая поверхность диска покрыта непрозрачным слоем напыленного металла, содержащим 1 мкм покрытие из сульфида цинка для повышения эффективности преобразования [8]. В качестве приемников 6 и 8, как и в устройстве-прототипе, выберем детекторы МГ-32. Роль светоделителя 5 отведем каптоновой пленке (с комплексной диэлектрической проницаемостью толщиной 0.14 мм, ориентированной под 45° относительно плоскости падения излучения на элемент 3. Измеренные значения коэффициентов отражения и пропускания равны R=0.28 и T=0.52, соответственно [9]. Пусть расстояния х2=150 мм и х3=50 мм, при этом отношение сигналов IT/IR, вырабатываемых приборами 9 и 7, равно 1.05. Тогда, согласно формуле (1), получим: L≈14.97 см, что соответствует экспериментально определенному значению длины распространения ПЭВ [10].

Таким образом, заявляемое устройство позволяет определять длину распространения инфракрасной ПЭВ за время одного импульса излучения путем реализации более простой, по сравнению с прототипом, процедуры измерений, характеризуемых более высоким соотношением сигнал/шум.

Источники информации, принятые во внимание при составлении заявки:

1. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Аграновича и Д.Л. Миллса. - М.: Наука, 1985. - 525 с.

2. Zhizhin G.N., Yakovlev V.A. Broad-band spectroscopy of surface electromagnetic waves // Physics Reports. - 1990. - v. 194. - No.5/6. - p. 281-289.

3. Ordal M.A., Long L.L., Bell R.J. et al. Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared // Applied Optics. - 1983. - v. 22. - No.7. - p. l099-1120.

4. Никитин А.К., Жижин Г.Н., Богомолов Г.Д., Никитин В.В., Чудинова Г.К. Устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра // Патент РФ на изобретение №2345351. - Бюл. №3 от 27.01.2009 г.

5. Князев Б.А., Никитин А.К., Жижин Г.Н. Способ измерения длины распространения инфракрасных поверхностных плазмонов по реальной поверхности // Патент РФ на изобретение №2512659. - Бюл. №1 от 10.01.2014 г.

6. Жижин Г.Н., Никитин А.К., Никитин В.В., Чудинова Г.К. Способ определения коэффициента затухания поверхностной электромагнитной волны ИК диапазона за время одного импульса излучения // Патент РФ на изобретение №2400714. - Бюл. №27 от 27.09.2010 г. (прототип).

7. Stegeman G.I., Wallis R.F., Maradudin A.A. Excitation of surface polaritons by end-fire coupling // Optics Letters, 1983, v. 8, No. 7, p. 386-388.

8. Gerasimov V.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating // JOSA (B), 2016, v. 33, Is. 11, p. 2196-2203.

9. Gerasimov V.V., Nikitin A.K., Lemzyakov A.G. et al. Splitting of terahertz surface plasmons by polyimide films // IOP Conf. Series: Journal of Physics: Conf. Series, 2018, v. 1092, 012040 (doi: 10.1088/1742-6596/1092/1/012040)

10. Жижин Г.Н., Никитин A.К., Богомолов Г.Д. и др. Поглощение поверхностных плазмонов терагерцового диапазона в структуре "металл-покровный слой-воздух" // Оптика и спектроскопия, 2006, Т. 100, №5, с. 798-802.

Устройство для определения длины распространения поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения, содержащее источник излучения, цилиндрический фокусирующий объектив, твердотельный образец со способной направлять ПЭВ плоской прямоугольной гранью, элемент преобразования излучения источника в коллимированный пучок ПЭВ, лучеразделитель, расщепляющий пучок на два вторичных пучка, и два фотоприемника, размещенных у освещаемых вторичными пучками участков ребер грани и подключенных к раздельным измерительным приборам, отличающееся тем, что элемент преобразования изготовлен в форме цилиндрического сегмента, примыкающего одним из ребер выпуклой поверхности к грани образца, а лучеразделитель выбран в виде плоской светоделительной пластинки, установленной на грани образца и ориентированной перпендикулярно к ней таким образом, что пластинка пересекает трек ПЭВ, исходящих от элемента преобразования, под углом 45°, причем один из фотоприемников размещен в плоскости падения излучения, а второй - в плоскости, перпендикулярной к ней.
Устройство для определения длины распространения поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения
Устройство для определения длины распространения поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения
Источник поступления информации: Роспатент

Показаны записи 11-20 из 59.
29.12.2017
№217.015.fc8c

Способ регистрации малых количеств органических нано- и микрочастиц в биологических тканях

Изобретение относится к области аналитической химии, в частности к масс-спектрометрическим способам измерения концентрации частиц в биологических тканях, и раскрывает способ регистрации органических нано- или микрочастиц в биологических тканях методом ускорительной масс-спектрометрии (УМС)....
Тип: Изобретение
Номер охранного документа: 0002638820
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.0193

Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека

Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека. Устройство включает в себя источник монохроматического излучения, первый фокусирующий...
Тип: Изобретение
Номер охранного документа: 0002629909
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.01d2

Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского...
Тип: Изобретение
Номер охранного документа: 0002629928
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.0e6f

Способ приготовления микроволокнистого катализатора

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов...
Тип: Изобретение
Номер охранного документа: 0002633369
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0eb3

Способ определения размеров газовых кластеров в сверхзвуковом газовом потоке

Использование: для обработки материалов и осаждения покрытий. Сущность изобретения заключается в том, что способ определения размеров газовых кластеров в сверхзвуковом газовом потоке включает истечение газа из звукового или сверхзвукового сопла, формирование кластерного пучка с помощью конусной...
Тип: Изобретение
Номер охранного документа: 0002633290
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.0f4a

Волоконный задающий генератор

Изобретение относится к лазерной технике. Волоконный задающий генератор содержит источник накачки и резонатор, состоящий из двух волоконных частей - активной нелинейной петли и длинной линейной части, соединяющихся посредством четырехпортового волоконного ответвителя; активная петля образует...
Тип: Изобретение
Номер охранного документа: 0002633285
Дата охранного документа: 11.10.2017
13.02.2018
№218.016.22d6

N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламин, обладающий цитотоксической активностью в отношении опухолевых клеток человека

Изобретение относится к N-[3-оксолуп-20(29)-ен-28-оил]-2,2,6,6-тетраметилпиперидин-4-иламину структурной формулы обладающему цитотоксической активностью в отношении опухолевых клеток человека. Технический результат: получено новое соединение, обладающее способностью подавлять рост опухолевых...
Тип: Изобретение
Номер охранного документа: 0002641900
Дата охранного документа: 23.01.2018
10.05.2018
№218.016.38dd

Способ анализа спектрально-временной эволюции излучения

Способ анализа спектрально-временной эволюции излучения включает в себя получение сигнала оптического гетеродина, измерение интенсивности сигнала, получение аналитической формы сигнала при помощи гильбертова дополнения. Далее вычисляют автокорреляционную функцию методом быстрого преобразования...
Тип: Изобретение
Номер охранного документа: 0002646940
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3ac3

Композиция, обладающая иммуностимулирующим действием для сублингвального применения

Изобретение относится к фармацевтической промышленности и медицине, в частности иммунологии, и представляет собой композицию, обладающую иммуностимулирующим действием для сублингвального применения, состоящую из двуспиральной РНК бактериофага Ф6 в количестве 0,5±0,1 мг, одноцепочечной дрожжевой...
Тип: Изобретение
Номер охранного документа: 0002647455
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4304

Способ измерения пространственно-временной эволюции излучения

Изобретение относится к методам спектроскопии высокого разрешения и пространственно-временного анализа оптического излучения со сложной структурой и относительно быстрой эволюцией. Оно может быть использовано при проведении научных и прикладных исследований лазерных систем, в том числе...
Тип: Изобретение
Номер охранного документа: 0002649643
Дата охранного документа: 04.04.2018
Показаны записи 11-20 из 39.
10.04.2015
№216.013.3d3c

Геодезическая призма для отклонения пучка монохроматических поверхностных плазмон-поляритонов терагерцового диапазона

Изобретение относится к области передачи информации посредством поверхностных электромагнитных волн и касается геодезической призмы для отклонения пучка монохроматических поверхностных плазмон-поляритонов (ППП). Геодезическая призма выполнена в виде конусной канавки, которая расположена на...
Тип: Изобретение
Номер охранного документа: 0002547164
Дата охранного документа: 10.04.2015
10.09.2015
№216.013.7603

Способ регулирования интенсивности инфракрасной поверхностной электромагнитной волны на плоскогранной структуре

Изобретение относится к области информационно-коммуникационных технологий и касается способа регулирования интенсивности инфракрасной поверхностной электромагнитной волны на плоскогранной структуре. Способ включает в себя преобразование на ребре структуры поверхностной электромагнитной волны в...
Тип: Изобретение
Номер охранного документа: 0002561800
Дата охранного документа: 10.09.2015
20.01.2016
№216.013.a3f7

Инфракрасный амплитудно-фазовый плазмонный спектрометр

Изобретение относится к инфракрасной (ИК) спектроскопии поверхности металлов и полупроводников, а именно к определению амплитудно-фазовых спектров как самой поверхности, так и ее переходного слоя, путем измерения характеристик направляемых этой поверхностью поверхностных плазмонов (ПП)....
Тип: Изобретение
Номер охранного документа: 0002573617
Дата охранного документа: 20.01.2016
12.01.2017
№217.015.63fd

Способ увеличения длины распространения инфракрасных монохроматических поверхностных электромагнитных волн по плоской металлической поверхности

Изобретение относится к области информационно-коммуникационных технологий и касается способа увеличения длины распространения инфракрасных монохроматических поверхностных электромагнитных волн (ПЭВ) по плоской металлической поверхности. Способ включает в себя нанесение на поверхность слоя...
Тип: Изобретение
Номер охранного документа: 0002589465
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7cce

Способ раздвоения плазмон-поляритонного канала связи терагерцового диапазона

Изобретение относится к области средств коммуникации. Способ раздвоения плазмон-поляритонного канала связи терагерцового диапазона включает создание основного и вторичных каналов на индивидуальных плоскогранных подложках с прямоугольными ребрами, размещение в основном канале неоднородности в...
Тип: Изобретение
Номер охранного документа: 0002600575
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.b6c1

Устройство для обнаружения неоднородностей на плоских гранях потока однотипных проводящих изделий в инфракрасном излучении

Изобретение относится к оптическим методам контроля качества поверхности металлов и полупроводников, а именно к инфракрасной (ИК) амплитудной рефлектометрии. Устройство содержит источник p-поляризованного монохроматического излучения, два элемента преобразования излучения в ПЭВ, приемник...
Тип: Изобретение
Номер охранного документа: 0002614660
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.e196

Способ управления спектром пучка широкополосного терагерцевого излучения

Изобретение относится к области оптического приборостроения и касается способа управления спектром пучка широкополосного терагерцевого излучения. Способ включает в себя размещение на пути пучка излучения селективно поглощающего фильтра в виде поверхности проводящей пластины, придание излучению...
Тип: Изобретение
Номер охранного документа: 0002625635
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e19a

Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком

Изобретение относится к области исследования поверхности металлов и полупроводников и касается устройства для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком. Устройство содержит источник монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002625641
Дата охранного документа: 17.07.2017
19.01.2018
№218.016.0193

Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека

Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека. Устройство включает в себя источник монохроматического излучения, первый фокусирующий...
Тип: Изобретение
Номер охранного документа: 0002629909
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.01d2

Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского...
Тип: Изобретение
Номер охранного документа: 0002629928
Дата охранного документа: 04.09.2017
+ добавить свой РИД