×
05.09.2019
219.017.c6e6

Результат интеллектуальной деятельности: Шагающий инсектоморфный мобильный микроробот

Вид РИД

Изобретение

Аннотация: Изобретение относится к микроробототехнике, а именно к шагающим мобильным микророботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, невесомости, микрогравитации и выполнения задач напланетных миссий. Шагающий мобильный микроробот содержит корпус, систему управления движением и движитель в виде ног, приводимых в движение термомеханическими микроактюаторами. Каждая из ног выполнена в виде зигзага из четырех ортогонально соединенных балок. Первая балка закреплена перпендикулярно боковой поверхности корпуса. Вторая балка расположена параллельно боковой поверхности корпуса под углом не менее 30 угловых градусов к поверхности перемещения и ориентирована в направлении движения микроробота. Третья балка выполнена из двух частей, соединенных между собой шарниром. А к четвертой балке присоединена шарниром ступня, состоящая из пальцев, снабженных термомеханическими актюаторами. Все балки кроме первой снабжены термомехническими микроактюаторами. При этом микроробот имеет не менее чем шесть ног. Изобретение обеспечивает повышение возможности адаптации к поверхности, имеющей сложный профиль. 3 з.п. ф-лы, 5 ил.

Изобретение относится к микроробототехнике, а именно к шагающим мобильным микророботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, невесомости, микрогравитации и выполнения задач напланетных миссий.

Известно устройство «Thermal-Powered, Insectlike Robot», представляющее собой подвижной робот, перемещающийся по разнородным поверхностям и способный перевозить груз, во много раз превышающий его вес [1]. Конструкция устройства представляет собой два массива термомеханических биморфных актюаторов, соединенных между собой платой с электропроводящими дорожками и расположенных крестообразно в группах по четыре штуки. Каждый из таких массивов образует подвижную ногу робота, позволяя ему перемещаться по ровным поверхностям за счет попеременного включения каждого из актюаторов. Термомеханические актюаторы в такой конструкции образованы двумя слоями полиимида с различными температурными коэффициентами линейного расширения. Робот может перемещаться по четырем направлениям в плоскости.

Недостатками известного технического решения являются невозможность перемещения по неплоским, рельефным поверхностям со ступенчатой неровностью, низкое значение деформации подвижных балок, низкая скорость перемещения робота по поверхности, невозможность перемещения по наклонным поверхностям.

Известное шагающее устройство [2] содержит корпус, к которому присоединены стержни, механизм качания и управляемый привод. Стержни выполнены в виде ног и представляют из себя механически связанные верхний рычаг, нижний рычаг и опору. Верхний рычаг снабжен управляемым приводом с функцией вращательного движения верхнего рычага в оси, параллельной оси тангажа корпуса, и связывает верхний рычаг с корпусом. Другой конец верхнего рычага связан с нижним рычагом посредством управляемого привода с функцией вращательного движения нижнего рычага в оси, параллельной оси крена корпуса, ортогонально оси вращательного движения верхнего рычага. Другой конец нижнего рычага связан с опорой. Функцию механизма качания обеспечивает конструкция ноги. Достигается упрощение кинематической конструкции шагающих устройств, предназначенных для перемещения по полу с возможностью переступания или обхода препятствий, смены статических положений корпуса в горизонтальной плоскости и с возможностью движения по ступенькам лестницы.

Недостатком известного устройства является громоздкость и сложность конструкции, а также значительные масса и габариты, что исключает возможность использования в условиях открытого космоса и выполнения задач напланетных миссий.

Известен мобильный пьезоэлектрический микроробот, содержащий подвижную платформу, пьезоэлектрические преобразователи, расположенные в вершинах равностороннего треугольника [3]. Система микроманипулирования содержит шаровую основу, постоянный магнит, пьезоэлектрические преобразователи, образующие декартову систему координат. Привод платформы представляет собой пьезокерамический трубчатый элемент с напыленными одним внутренним и четырьмя внешними симметрично расположенными электродами. Один конец пьезокерамического трубчатого элемента присоединен к втулке с проточенными пазами, в которые уложены провода. К другому свободному концу пьезокерамического трубчатого элемента приклеен рубиновый шарик. Пьезоэлектрические преобразователи системы микроманипулирования выполнены с напыленными одним внутренним и двумя внешними симметрично расположенными электродами и образуют декартову систему координат.

Недостатком известного устройства является то, что оно может двигаться только по плоской поверхности, сложность и низкая надежность конструкции, связанная с наличием движущихся с трением деталей.

Наиболее близким к заявляемому по своей технической сущности и достигаемому эффекту является микросистемный шагающий космический робот [4]. Шагающий мобильный микроробот, содержит корпус, систему управления движением и движитель в виде соединенных с корпусом нескольких ног, приводимых в движение термомеханическими актюаторами.

Недостатком известного устройства является то, что оно может двигаться только по плоской поверхности преодолевая выступы и ступеньки, однако оно не может адаптироваться к поверхности, имеющей сложный профиль, в результате чего часть ног движителя теряет контакт с поверхностью перемещения, что может лишить его возможности продолжать полноценное движение.

Заявляемый шагающий инсектоморфный мобильный микроробот направлен на повышение возможности адаптации к поверхности, имеющей сложный профиль.

Указанный результат достигается тем, что шагающий инсектоморфный мобильный микроробот, содержит корпус, систему управления движением и движитель в виде нескольких ног, приводимых в движение термомеханическими актюаторами. При этом каждая из ног выполнена в виде зигзага из четырех ортогонально соединенных балок, первая из которых закреплена перпендикулярно боковой поверхности корпуса, вторая расположена параллельно боковой поверхности корпуса под углом не менее 30 угловых градусов к поверхности перемещения и ориентирована в направлении движения микроробота. Все балки кроме первой снабжены термомехническими микроактюаторами, третья балка выполнена из двух частей, соединенных между собой шарниром, а к четвертой балке присоединена шарниром ступня, состоящая из пальцев, снабженных термомеханическими актюаторами, при этом микроробот имеет не менее чем шесть ног.

Указанный результат достигается также тем, что ступня выполнена в виде не менее трех плоских пальцев.

Указанный результат достигается также тем, что плоские пальцы ступни выполнены в форме трапеции меньшей стороной соединенной с шарниром.

Указанный результат достигается также тем, что плоские пальцы снабжены средством для адгезии к поверхности перемещения.

Отличительными признаками заявляемого устройства являются:

- каждая из ног выполнена в виде зигзага из четырех ортогонально соединенных балок, первая из которых закреплена перпендикулярно боковой поверхности корпуса, вторая расположена параллельно боковой поверхности корпуса под углом не менее 30 угловых градусов к поверхности перемещения и ориентирована в направлении движения микроробота, все балки кроме первой снабжены микроактюаторами, а третья балка выполнена из двух частей, соединенных между собой шарниром;

- микроробот снабжен не менее чем шестью ногами;

- ступня выполнена в виде не менее трех плоских пальцев;

- плоские пальцы снабжены термомеханическими актюаторами.

- плоские пальцы ступни соединены в шарнире;

- плоские пальцы ступни выполнены в форме трапеции, меньшей стороной соединенной с шарниром;

- плоские пальцы снабжены средством для адгезии к поверхности перемещения.

Выполнение ног в виде зигзага из четырех ортогонально соединенных балок, первая из которых закреплена перпендикулярно боковой поверхности корпуса, вторая расположена параллельно боковой поверхности корпуса под углом не менее 30 угловых градусов к поверхности перемещения и ориентирована в направлении движения микроробота, и снабжение всех балок кроме первой микроактюаторами, а третья балка выполнена из двух частей, соединенных между собой шарниром позволяет создать кинематическую схему с несколькими степенями свободы и тем самым обеспечить адаптацию каждой ноги к поверхности перемещения независимо от изменения ее рельефа. При этом экспериментально установлено, что для реализации процесса движения микроробота с использованием ног предложенной конструкции их число должно быть не менее чем шесть.

Снабжение четвертой балки ступней, соединенной с балкой шарниром позволяет повысить устойчивость робота на поверхности со сложным профилем, а ее выполнение в виде не менее трех плоских пальцев, их соединение в шарнире и снабжение термомеханическими актюаторами повысить адаптацию к такой поверхности. Наиболее целесообразно выполнять пальцы в форме трапеции меньшей стороной соединенной с шарниром, обеспечивающим адаптацию ступни к неоднородностям поверхности перемещения. Дополнительное снабжение пальцев средством для адгезии к поверхности перемещения позволит повысить устойчивость робота на поверхности со сложным профилем и фиксацию на поверхности перемещения в условиях микрогравитации.

Сущность заявляемого шагающего мобильного микроробота поясняется примером реализации и чертежами. На фиг. 1 представлена схематично конструкция одной ноги мобильного микроробота, охарактеризованной в первом пункте формулы изобретения (вид сверху на поверхность перемещения). На фиг. 2 представлена схематично конструкция одной ноги мобильного микроробота, снабженной ступней (вид сверху на поверхность перемещения). На фиг. 3 представлен схематично фрагмент микроробота (вид сбоку) поясняющий расположение составных звеньев ноги относительно корпуса и поверхности перемещения. На фиг.4 представлен схематично вариант конструкции ступни ноги мобильного микроробота. На фиг. 5 представлен схематично вид сверху вариант конструкции шагающего мобильного микроробота.

Шагающий мобильный микроробот, содержит корпус 1, систему управления движением (не показана) и движитель 2 и 2* (см. фиг. 5) в виде нескольких ног. Каждая из ног выполнена в виде зигзага из четырех ортогонально соединенных балок, первая из которых 3 закреплена перпендикулярно боковой поверхности корпуса, вторая 4 расположена параллельно боковой поверхности корпуса под углом не менее 30 угловых градусов к поверхности перемещения и ориентирована в направлении движения 13. Поскольку предполагается обеспечение возможности движения микроробота в двух направлениях - вперед и назад, то для этого и ноги ориентируют соответствующим образом- часть в направлении движения вперед, а часть для движения назад (см. фиг. 5). Третья балка 5 выполнена из двух частей, соединенных между собой шарниром 6. Вторая балка 4, третья балка 5 и четвертая балка 7 снабжены термомеханическими актюаторами 8. Для обеспечения процесса перемещения микроробот снабжен не менее чем шестью такими ногами. В частных случаях реализации ноги робота могут быть снабжены ступнями 10, соединенными через шарнир 9 с четвертой балкой 7. Ступни 10 выполнены состоящими из плоских пальцев 10*, и снабжены актюаторами 11 и средством 12 для адгезии к поверхности перемещения. Все конструктивные элементы, входящие в состав микроробота выбираются из числа известных, а система управления снабжается программой, обеспечивающей функционирование микроробота.

Шагающий мобильный микроробот функционирует следующим образом. Балка 3 жестко закреплена на корпусе 1. При соприкосновении с неровной поверхностью перемещения пальцами 10*, снабженными средством для адгезии к поверхности перемещения 12 включаются термомеханические актюаторы 8 и 11 не менее трех ног движителя 2 или 2*, расположенные на противоположных сторонах корпуса, прикрепляются к поверхности перемещения. Затем не менее трех ног движителя 2, не закрепленные на поверхности перемещения деформируются под действием актюаторов 8 (деформация балок и пальцев показана стрелками на фиг. 3) совершают перемещение в направлении движения микроробота 13*, прикрепляются к поверхности перемещения, затем уже ранее прикрепленные ноги открепляются от поверхности перемещения и цикл повторяется. Термомеханические актюаторы 11, расположенные на каждом из плоских пальцев 10* и шарниры 6 (на фиг. 3 не показан) и 9 необходимы для адаптации ступни 10 к неровной поверхности перемещения. Это происходит в случае, если неровность поверхности перемещения соизмерима с размерами ступни 10. Каждый из пальцев ступни 10 (обозначено 10*) адаптируется к 3D неровностям поверхности перемещения путем деформации актюаторов 11. При необходимости поворота микроробота одна из линеек ног (например, 2 относительно 2*) движителя движется быстрее другой. Развернутая на угол не менее 30 угловых градусов вторая балка 4, шарниры 6 и 9 обеспечивают преодоление микророботом неровностей поверхности и/или ступенек. Таким образом, конструкция позволяет создать кинематическую схему с несколькими степенями свободы и тем самым обеспечить адаптацию каждой ноги к поверхности перемещения независимо от ее рельефа.

Список литературы.

1. Erdem E.Y., Chen Y.M., Mohebbi М., Darling R.B., Suh J.W., Kovacs G.T.A. Thermally Actuated Omnidirectional Walking Microrobot. Journal of Microelectromechanical Systems, 2010; 19 (3). C. 433-442.

2. Патент РФ №2642020, МПК B62D 57/032, опубл. 28.12.2017

3. Патент РФ №2164362, МПК 25J 7/00, опубл. 20.03.2001

4. Патент РФ №2566454, МПК 25J 11/00, опубл. 20.09.2015


Шагающий инсектоморфный мобильный микроробот
Шагающий инсектоморфный мобильный микроробот
Шагающий инсектоморфный мобильный микроробот
Шагающий инсектоморфный мобильный микроробот
Шагающий инсектоморфный мобильный микроробот
Шагающий инсектоморфный мобильный микроробот
Источник поступления информации: Роспатент

Показаны записи 11-20 из 31.
21.10.2018
№218.016.94b6

Способ считывания и управления колебаниями волнового твердотельного гироскопа

Изобретение относится к области точного приборостроения и может быть использовано при создании твердотельных волновых гироскопов и систем ориентации и навигации на их основе. Технический результат – повышение точности интегрирующего гироскопа и уменьшение дрейфа прецизионного прибора. Способ...
Тип: Изобретение
Номер охранного документа: 0002670245
Дата охранного документа: 19.10.2018
19.12.2018
№218.016.a86b

Ступня ноги для шагающего космического микроробота

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена с...
Тип: Изобретение
Номер охранного документа: 0002675327
Дата охранного документа: 18.12.2018
06.07.2019
№219.017.a6ce

Устройство для испытания материалов на трение и износ

Изобретение относится к области исследования триботехнических характеристик материалов пар трения и может быть использовано для их определения с высокой точностью не только в нормальных, но и в специфических условиях, в частности в условиях открытого космоса, в зоне действия ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002693796
Дата охранного документа: 04.07.2019
02.10.2019
№219.017.cca6

Устройство управления манипулятором робота

Устройство управления манипулятором робота содержит датчик угла поворота, блок сравнения (сумматор), шесть усилителей, два интегратора, исполнительное устройство, соединенные определенным образом. Обеспечивается повышение быстродействия, снижение ошибки позиционирования, упрощение устройства и...
Тип: Изобретение
Номер охранного документа: 0002701459
Дата охранного документа: 26.09.2019
03.10.2019
№219.017.d1a2

Способ определения коэффициентов трения трибосопряжения "поддон-напольное покрытие"

Изобретение относится к области испытания материалов на трение и касается способа экспериментального определения сил/коэффициентов трения при скольжении грузовых поддонов по напольному покрытию автомобильных фур, в частности, по фанерному ламинированному щиту. Сущность: испытуемый грузовой...
Тип: Изобретение
Номер охранного документа: 0002701608
Дата охранного документа: 01.10.2019
12.04.2023
№223.018.439f

Генератор импульсов ионизации

Изобретение относится к области лазерной техники и может быть использовано при создании мощных технологических электроразрядных лазеров импульсно-периодического действия на углекислом газе и окиси углерода с несамостоятельным тлеющим разрядом с импульсной емкостной ионизацией. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002793569
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4b47

Способ измерения температуры модели при вакуумировании в гиперзвуковом потоке

Способ относится к области экспериментальной аэротермодинамики, в частности к лабораторным вакуумным аэродинамическим установкам кратковременного действия, обеспечивающим моделирование условий полета летательных аппаратов в верхних слоях атмосферы с большими числами Маха. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002773063
Дата охранного документа: 30.05.2022
20.04.2023
№223.018.4b5c

Способ удаления нефтепродуктов с поверхности воды

Изобретение относится к технике очистки водной поверхности от жидких загрязнений, преимущественно от нефтепродуктов. Способ удаления нефтепродуктов с поверхности воды включает создание вращательного движения воды в объеме размещаемого ниже границы раздела «вода-нефтепродукт» полого цилиндра с...
Тип: Изобретение
Номер охранного документа: 0002766599
Дата охранного документа: 15.03.2022
20.04.2023
№223.018.4b5f

Способ лазерной калибровки датчиков теплового потока с имитацией экспериментальной нагрузки

Изобретение относится к способу калибровки датчиков теплового потока при помощи лазерного излучения и может найти применение в высокоскоростных газодинамических экспериментах, в газовой динамике, в исследовании пламени и химических реакций с выделением тепла. Технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002766410
Дата охранного документа: 15.03.2022
20.04.2023
№223.018.4c0a

Способ одновременной калибровки нескольких датчиков теплового потока

Изобретение относится к способу одновременной калибровки нескольких датчиков теплового потока при помощи лазерного излучения и может быть использовано в высокоскоростных газодинамических экспериментах, в газовой динамике, в исследовании пламени и химических реакций с выделением тепла....
Тип: Изобретение
Номер охранного документа: 0002769582
Дата охранного документа: 04.04.2022
Показаны записи 11-20 из 60.
10.06.2014
№216.012.cd20

Способ осаждения нитрида кремния на кремниевую подложку

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении полупроводниковых приборов и/или устройств микросистемной техники на кремниевых подложках, содержащих в своей структуре пленки нитрида кремния различного функционального назначения....
Тип: Изобретение
Номер охранного документа: 0002518283
Дата охранного документа: 10.06.2014
20.07.2014
№216.012.de4c

Способ изготовления метаматериала (варианты)

Группа изобретений относится к области микроэлектроники - технологии изготовления слоистых изделий - и может быть использована при создании электродинамических и/или антенных устройств, содержащих в своей структуре слоистый материал со специфическими электрическими свойствами и обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002522694
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df04

Микромеханическая система

Изобретение относится к микросистемной технике для создания электростатически управляемых микромеханических резонаторов для датчикопреобразующей аппаратуры и микрореле для коммутации СВЧ и НЧ аналоговых электрических цепей. Система содержит микромеханический исполнительный элемент,...
Тип: Изобретение
Номер охранного документа: 0002522878
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e9b1

Солнечная батарея для малоразмерных космических аппаратов и способ ее изготовления

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ)....
Тип: Изобретение
Номер охранного документа: 0002525633
Дата охранного документа: 20.08.2014
10.07.2015
№216.013.5f1e

Микроструктурная многослойная экранно-вакуумная изоляция космических аппаратов

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин. Каждая микропластина...
Тип: Изобретение
Номер охранного документа: 0002555891
Дата охранного документа: 10.07.2015
27.10.2015
№216.013.8823

Микросистемный космический робот-инспектор (варианты)

Изобретение относится к области микроробототехники, в которой основными подвижными элементами конструкции являются устройства микросистемной техники, выполненные по технологиям микрообработки кремния. Робот-инспектор может быть использован при создании систем, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002566454
Дата охранного документа: 27.10.2015
10.06.2016
№216.015.4566

Способ фотолитографии

Изобретение относится к электронной технике, в частности к процессам формирования топологических элементов микроэлектронных устройств с использованием электрохимического осаждения и взрывной литографии. Способ фотолитографии включает формирование первого слоя позитивного фоторезиста путем, по...
Тип: Изобретение
Номер охранного документа: 0002586400
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7526

Микросистемный захват

Изобретение относится к микросистемной технике, в частности к микроробототехнике, и может быть использовано в исполнительных устройствах роботов при манипулировании микрообъектами сложных конфигураций и сыпучих материалов, например, в космической технике, для забора проб грунта планет, комет и...
Тип: Изобретение
Номер охранного документа: 0002598416
Дата охранного документа: 27.09.2016
25.08.2017
№217.015.d109

Гиперзвуковая ударная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики, в частности к вакуумным аэродинамическим установкам, обеспечивающим моделирование условий полета летательных аппаратов (ЛА) в верхних слоях атмосферы и в космическом пространстве, и может быть использовано для получения...
Тип: Изобретение
Номер охранного документа: 0002621367
Дата охранного документа: 02.06.2017
25.08.2017
№217.015.d24c

Двунаправленный тепловой микромеханический актюатор и способ его изготовления

Использование: для изготовления микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы. Сущность изобретения заключается в том, что микромеханический актюатор выполнен в виде сформированной в меза-структуре упруго-шарнирной консольной балки, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002621612
Дата охранного документа: 06.06.2017
+ добавить свой РИД