×
03.09.2019
219.017.c6b1

Результат интеллектуальной деятельности: СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике, в частности к системам терморегулирования. Система терморегулирования космического аппарата содержит два сдублированных одинаковых жидкостных контура. В каждом жидкостном контуре установлен терморегулятор расхода теплоносителя прямого действия. Он имеет один вход и два выхода, первый выход соединен с жидкостным трактом на входе в радиатор, а второй выход - с жидкостным трактом на выходе из радиатора. В жидкостном тракте между первым выходом терморегулятора и входом в радиатор установлен первый дополнительный вентиль. Участок жидкостного тракта, находящийся между первым выходом терморегулятора и входом в первый дополнительный вентиль, соединен через второй дополнительный вентиль с жидкостным трактом, соединяющим второй выход терморегулятора с выходом радиатора. Достигается улучшение массовых характеристик. Достигается улучшение работоспособности. 2 ил.

Изобретение относится к космической технике, в частности к системам терморегулирования (СТР) телекоммуникационных спутников.

В настоящее время для обеспечения теплового режима приборов служебных систем, установленных в герметичном контейнере, и приборов полезной нагрузки, расположенных вне герметичного контейнера, применяется СТР, выполненная на базе патента Российской Федерации (РФ) №2221732 [1]. Указанная СТР содержит замкнутый жидкостный контур, в котором, в частности, установлены основной и резервный терморегуляторы расхода теплоносителя прямого действия.

В случае, когда необходимо обеспечить срок активного существования на орбите КА до 10-15 лет, жидкостные контуры СТР выполняют состоящими из двух идентичных контуров: основного и резервного согласно, например, патенту РФ №2564286 [2]. Анализ показал: в этом случае нет необходимости в каждом жидкостном контуре предусматривать по два терморегулятора. Принципиальная схема СТР, оптимальной по массе, работоспособной с высокой надежностью на орбите, выполненная на базе [1], имеет вид, изображенный на фиг. 1 (второй контур условно не показан). Указанная СТР содержит замкнутый жидкостный контур с теплоносителем и включает в себя соединенные между собой трубопроводами устройства: газожидкостный теплообменник 1 с вентилятором 2, установленные в герметичном контейнере для обеспечения отвода избыточного тепла, выделяющегося при работе приборов служебных систем, установленных в нем; электронасосный агрегат 3, обеспечивающий циркуляцию теплоносителя в жидкостном контуре (имеющий в своем составе основной и резервный насосы - резервный насос включается в работу в случае отказа основного); жидкостную плату 4 приборов полезной нагрузки, предназначенную для отвода избыточного тепла, выделяющегося при работе прикрепленных к ней приборов; терморегулятор расхода теплоносителя прямого действия 5, предусмотренный в составе СТР для регулирования расхода теплоносителя через и минуя радиатор 9 в течение длительного орбитального функционирования; чувствительный элемент 5.1 терморегулятора заполнен рабочей жидкостью, установлен в потоке теплоносителя в жидкостном тракте на выходе из жидкостной платы 4; терморегулятор 5 имеет один вход и два выхода, причем второй выход «2» терморегулятора 5 соединен с жидкостным трактом на выходе из радиатора 9; первый выход «1» его сообщен с входом радиатора; датчики температуры теплоносителя 6, 7, 8; компенсатор объема 10.

В процессе разработки мощного КА авторами установлено, что в процессе заправки теплоносителем необходимо обеспечить циркуляцию теплоносителя как через жидкостные тракты панели радиатора, так и через жидкостный тракт байпаса (минуя панель радиатора). Кроме того, тепловой режим такого КА при наземных электрических испытаниях в условиях окружающего воздуха будет обеспечиваться с отводом избыточного тепла в наземную систему обеспечения теплового режима, для чего циркулирующий поток теплоносителя должен быть направлен через жидкостный тракт байпаса (минуя панель радиатора), т.к. в процессе разработки СТР мощного КА также установлено, что для обеспечения требуемого температурного режима приборов при изменении энергопотребления их от минимального до максимального (и наоборот) значений температура начала срабатывания терморегулятора (когда канал «1» его полностью закрыт при полном открытии «2») должна быть , а температура конца срабатывания (полное закрытие канала «2» при полном открытии канала «1») должна быть (20±1)°С. Имея ввиду то, что при наземных испытаниях температура окружающего воздуха поддерживается в диапазоне (24±3)°С, это означает что в схеме СТР для обеспечения изготовления и наземных испытаний необходимо предусмотреть на выходе из терморегулятора перепускные клапаны. Анализ показал, что они имеют относительно большую массу -1,35 кг и потребляют электрическую энергию (1,5 Вт). С учетом того, что в условиях штатной эксплуатации на орбите нет необходимости иметь в составе СТР перепускные клапаны, целесообразно вместо перепускных клапанов предусмотреть два дополнительных вентиля (с массой по 0,245 кг; электрическую энергию не потребляют) на выходе из терморегулятора и это позволит устранить существенные недостатки СТР [1].

Таким образом, анализ работоспособности разрабатываемой СТР с двумя сдублированными жидкостными контурами, выполненной согласно [1], показывает, что она с точки зрения обеспечения работоспособности ее в процессе изготовления и наземных испытаний имеет существенные недостатки, а именно: не обеспечивается циркуляция теплоносителя как через жидкостные тракты панели радиатора, так и через жидкостный тракт байпаса в процессе заправки теплоносителем СТР и через жидкостный тракт байпаса (минуя панель радиатора) для обеспечения требуемого теплового режима приборов с использованием наземной системы обеспечения теплового режима, т.е. СТР, выполненная согласно [1], не обеспечивает достаточно широкие функциональные возможности, необходимые при изготовлении и наземных испытаниях разрабатываемого КА.

Данное изобретение выбрано в качестве прототипа.

Поставленная цель достигается тем, что в системе терморегулирования космического аппарата, содержащей замкнутый жидкостный контур с теплоносителем, включающий в себя соединенные трубопроводами устройства: газожидкостный теплообменник с вентилятором, установленные в герметичном контейнере, электронасосный агрегат, жидкостную плату приборов полезной нагрузки, терморегулятор расхода теплоносителя прямого действия с чувствительным элементом, заполненным рабочей жидкостью, установленным в потоке теплоносителя в жидкостном тракте, имеющий один вход и два выхода, первый выход из которых соединен с жидкостным трактом на входе в радиатор, а второй выход - с жидкостным трактом на выходе из радиатора, компенсатор объема и вентили для подключения к жидкостному тракту системы заправщика в процессе заправки теплоносителем и системы обеспечения теплового режима при наземных испытаниях, в жидкостном тракте между первым выходом терморегулятора и входом в радиатор установлен первый дополнительный вентиль, а участок жидкостного тракта, находящейся между первым выходом терморегулятора и входом в первый дополнительный вентиль соединен через второй дополнительный вентиль с жидкостным трактом, идущим от второго выхода терморегулятора к выходу радиатора, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом устройстве.

Принципиальная схема предлагаемой СТР КА приведена на фиг. 2.

Предлагаемая СТР содержит замкнутый жидкостный контур с теплоносителем и включает в себя соединенные между собой трубопроводами устройства: газожидкостный теплообменник 1 с вентилятором 2, установленные в герметичном контейнере для обеспечения отвода избыточного тепла, выделяющегося при работе приборов служебных систем, установленных в нем; электронасосный агрегат 3, обеспечивающий циркуляцию теплоносителя в жидкостном контуре (имеющий в своем составе основной и резервный насосы - резервный насос включается в работу в случае отказа основного); жидкостную плату 4 приборов полезной нагрузки, предназначенную для отвода избыточного тепла, выделяющегося при работе прикрепленных к ней приборов; терморегулятор расхода теплоносителя 5, предусмотренный в составе СТР для регулирования расхода теплоносителя через и минуя радиатор 9 в течении длительного орбитального функционирования; чувствительный элемент 5.1 терморегулятора заполнен рабочей жидкостью, установлен в потоке теплоносителя в жидкостном тракте на выходе из жидкостной платы 4; терморегулятор 5 имеет один вход и два выхода, причем второй выход «2» терморегулятора 5 соединен с жидкостным трактом на выходе из радиатора 9; первый выход «1» его сообщен с входом радиатора 9; датчики температуры теплоносителя 6, 7, 8; компенсатор объема 10; вентили 11.1-11.3, обеспечивающие стыковку заправщика 12.1 или наземной системы обеспечения теплового режима 12.2 с жидкостным контуром СТР; причем в жидкостном тракте между первым выходом терморегулятора 5 и входом в радиатор 9 установлен первый дополнительный вентиль 13, а участок жидкостного тракта, находящийся между первым выходом терморегулятора 5 и входом в первый дополнительный вентиль 13 соединен через второй дополнительный вентиль 14 с жидкостным трактом, соединяющим второй выход терморегулятора 5 с выходом радиатора 9.

Работа предложенной СТР КА происходит следующим образом. После сборки СТР и КА в целом с помощью вентилей 11.1-11.3 к первому жидкостному контуру СТР (второй жидкостный контур условно на фиг. 2 не показан) присоединяют заправщик 12.1 и жидкостные контуры заправляют теплоносителем (при этом вентили 11.1 и 11.2 открыты, а вентиль 11.3 закрыт). При проливке теплоносителя (при температуре (24±3)) минуя радиатор 9 второй дополнительный вентиль 14 открывают, а первый дополнительный вентиль 13 закрывают, при проливке через радиатор 9 положение дополнительных вентилей устанавливают наоборот. После заправки заправщик 12.1 отстыковывают от СТР КА и к первому жидкостному контуру СТР присоединяют наземную систему обеспечения теплового режима 12.2 (тепловой режим КА обеспечивается при отводе избыточного тепла при работе первого жидкостного контура). Перед включением в работу СТР КА (в частности, вентилятора и электронасосного агрегата) первый дополнительный вентиль 13 закрывают, а второй дополнительный вентиль 14 открывают; а также вентили 11.1 и 11.2 открывают, а вентиль 11.3 закрывают, тем самым обеспечив при включенной СТР циркуляцию теплоносителя через наземную систему 12.2 и минуя панель радиатора 9 (при наземных условиях панель радиатора излучением отводит недостаточное количество тепла и требуемый тепловой режим приборов не обеспечивается). В результате выполнения вышеуказанных операций с вентилями после включения в работу приборов КА осуществляется отвод избыточного тепла в работающую наземную систему обеспечения теплового режима 12.2 и обеспечивается требуемый температурный режим приборов КА.

После окончания наземных испытаний с положительными результатами отстыковывают наземную систему обеспечения теплового режима 12.2 и вентили устанавливают в положения, соответствующие функционированию СТР на орбите: первый дополнительный вентиль 13 открывают, а второй дополнительный вентиль 14 закрывают, а вентили 11.1, 11.2 закрывают, вентиль 11.3 - открывают.

В условиях эксплуатации на орбите в результате установки вентилей согласно вышеуказанному при температуре теплоносителя в районе чувствительных элементов терморегуляторов, равной и менее, весь расход теплоносителя направляется минуя жидкостные тракты радиатора 9, а при температуре теплоносителя (20±1)°С и выше полный расход теплоносителя направляется через жидкостные тракты радиатора 9; при температуре теплоносителя в диапазоне от до (20±1)°С соответствующие расходы теплоносителя направляются как через, так и минуя жидкостные тракты радиатора 9 и в результате обеспечивается требуемый температурный режим приборов во всех условиях эксплуатации КА на орбите.

Таким образом, при изготовления СТР КА, во всех условиях эксплуатации КА: при наземных условиях и условиях эксплуатации на орбите обеспечиваются требуемые функциональные возможности СТР в результате обеспечения требуемых режимов функционирования предложенной авторами оптимальной по массе и энергопотреблению конструкции жидкостных контуров СТР КА, т.е. тем самым достигаются цели изобретения.

Система терморегулирования космического аппарата, содержащая замкнутый жидкостный контур с теплоносителем, включающий в себя соединенные трубопроводами устройства: газожидкостный теплообменник с вентилятором, установленные в герметичном контейнере, электронасосный агрегат, жидкостную плату приборов полезной нагрузки, терморегулятор расхода теплоносителя прямого действия с чувствительным элементом, заполненным рабочей жидкостью, установленным в потоке теплоносителя в жидкостном тракте, имеющий один вход и два выхода, первый выход из которых соединен с жидкостным трактом на входе в радиатор, а второй выход - с жидкостным трактом на выходе из радиатора, компенсатор объема и вентили для подключения к жидкостному тракту системы заправщика в процессе заправки теплоносителем и системы обеспечения теплового режима при наземных испытаниях, отличающаяся тем, что в жидкостном тракте между первым выходом терморегулятора и входом в радиатор установлен первый дополнительный вентиль, а участок жидкостного тракта, находящийся между первым выходом терморегулятора и входом в первый дополнительный вентиль, соединен через второй дополнительный вентиль с жидкостным трактом, идущим от второго выхода терморегулятора к выходу радиатора.
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 193.
10.06.2016
№216.015.48ff

Такелажно-швартовочный узел

Изобретение относится к сборно-разборным устройствам, предназначенным для проведения операций по закреплению на транспортных средствах с обеспечением требуемого угла наклона растяжек и (или) по переносу объектов различного назначения (транспортных контейнеров, ящиков и других изделий)....
Тип: Изобретение
Номер охранного документа: 0002586470
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.49f5

Способ выведения космического аппарата на геостационарную орбиту с использованием двигателей малой тяги

Изобретение относится к межорбитальному маневрированию космического аппарата (КА). Способ включает выведение КА на переходную орбиту с нулевым наклонением двигателями большой тяги. Перигей этой орбиты лежит ниже геостационарной орбиты (ГСО), а апогей - выше ГСО. Довыведение КА на ГСО...
Тип: Изобретение
Номер охранного документа: 0002586945
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.5c78

Бак высокого давления

Изобретение относится к области машиностроения, в частности к баку высокого давления для хранения рабочих тел, предназначенному для использования на космическом аппарате. Бак содержит металлический лейнер, имеющий верхнее и нижнее днища овальной формы, выполненные в виде полусфер, герметично...
Тип: Изобретение
Номер охранного документа: 0002589956
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7719

Способ организации помехоустойчивой связи

Изобретение относится к радиотехнике и может быть использовано для создания помехоустойчивых систем связи. Техническим результатом изобретения является снижение порога устойчивой работы широкополосной системы связи на 3…6 дБ за счет расширения полосы формируемого сигнала. Способ организации...
Тип: Изобретение
Номер охранного документа: 0002599578
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8a7b

Способ управления автономной системой электроснабжения космического аппарата

Использование: в области электротехники. Технический результат - повышение надежности системы электроснабжения. Согласно способу управления автономной системой электроснабжения космического аппарата, содержащей солнечную батарею и n аккумуляторных батарей, стабилизатор напряжения, включенный...
Тип: Изобретение
Номер охранного документа: 0002604206
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8aaf

Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности. Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника Земли (ИСЗ) заключается в проведении зарядов, хранении в заряженном состоянии подзарядов, при необходимости, разрядов,...
Тип: Изобретение
Номер охранного документа: 0002604207
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8ac9

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Использование: в области электротехники в системах электропитания искусственных спутников Земли (ИСЗ). Технический результат - повышение удельных энергетических характеристик и качества выходного напряжения автономной системы электропитания ИСЗ. Способ заключается в том, что в автономной...
Тип: Изобретение
Номер охранного документа: 0002604096
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9212

Регулировочно-соединительное устройство

Изобретение относится к области машиностроения и может быть использовано как устройство закрепления оборудования к конструкции корпуса космического аппарата. Регулировочно-соединительное устройство содержит комплект крепежных элементов для шарнирного соединения, шпангоут, на посадочные...
Тип: Изобретение
Номер охранного документа: 0002605666
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.b74a

Способ заряда литий-ионной аккумуляторной батареи из "n" последовательно соединенных аккумуляторов

Изобретение относится к электротехнической промышленности. Способ заряда литий-ионной аккумуляторной батареи из «n» последовательно соединенных аккумуляторов заключается в контроле напряжения аккумуляторов, отключении заряда по достижении напряжения любого из аккумуляторов заданного...
Тип: Изобретение
Номер охранного документа: 0002614514
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.c791

Двухступенчатый электронасосный агрегат

Изобретение относится к машиностроительной гидравлике и может быть использовано как электронасосный агрегат (ЭНА) в составе систем терморегулирования самолетов и космических аппаратов. Двуступенчатый ЭНА содержит входной и выходной патрубки и два ЭНА. Каждый ЭНА содержит электродвигатель с...
Тип: Изобретение
Номер охранного документа: 0002618777
Дата охранного документа: 11.05.2017
Показаны записи 41-47 из 47.
01.09.2019
№219.017.c575

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к области космической техники, в частности к изготовлению системы терморегулирования. Способ изготовления жидкостного контура системы терморегулирования космического аппарата включает гидравлическое соединение контура с устройством заправки; заполнение и промывку...
Тип: Изобретение
Номер охранного документа: 0002698503
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5a3

Способ испытаний системы терморегулирования космического аппарата

Изобретение относится к космической технике, в частности к наземным испытаниям космических систем. Способ испытания системы терморегулирования космического аппарата включает следующие действия. Заполнение трактов системы жидким теплоносителем. Отстыковка компенсационного устройства. Соединение...
Тип: Изобретение
Номер охранного документа: 0002698573
Дата охранного документа: 28.08.2019
25.04.2020
№220.018.18ab

Способ возведения буронабивной сваи в грунтоцементной оболочке

Изобретение относится к области строительства, а именно к возведению буронабивных свай в непосредственной близости от стоящих зданий и сооружений, и может быть использовано при формировании свайных фундаментов в слабых грунтах, а также для укрепления слабых грунтов использованием струйной...
Тип: Изобретение
Номер охранного документа: 0002720047
Дата охранного документа: 23.04.2020
04.07.2020
№220.018.2f5e

Способ возведения буронабивной сваи с грунтоцементными уширениями в зоне слабых грунтов и устройство для его осуществления (варианты)

Изобретение относятся к области строительства, а именно к способам закрепления грунтов оснований зданий и сооружений, и может быть использовано при формировании свайных фундаментов сооружений различного назначения в слабых водонасыщенных грунтах. Способ возведения буронабивной сваи с...
Тип: Изобретение
Номер охранного документа: 0002725363
Дата охранного документа: 02.07.2020
06.08.2020
№220.018.3cf1

Система терморегулирования космического аппарата

Изобретение относится к системе терморегулирования (СТР) космического аппарата. СТР содержит два замкнутых независимых жидкостных тракта с теплоносителем (один из них служит резервным). Каждый тракт включает в себя терморегулятор расхода теплоносителя с чувствительным элементом, радиатор,...
Тип: Изобретение
Номер охранного документа: 0002729149
Дата охранного документа: 04.08.2020
23.05.2023
№223.018.6ef7

Космический аппарат

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам (КА). КА содержит систему терморегулирования с приборами для отбора, подвода и сброса тепла. Кроме того, КА включает систему электропитания с солнечными батареями, комплексом автоматики и...
Тип: Изобретение
Номер охранного документа: 0002749928
Дата охранного документа: 21.06.2021
16.06.2023
№223.018.79c3

Гибко-плоский электронагреватель

Изобретение относится к области космического машиностроения и может быть использовано при изготовлении гибких, плоских, гибко-плоских электронагревателей (ЭН) космических аппаратов (КА). Технический результат - создание ЭН с увеличенным КПД для условий штатной работы в составе КА...
Тип: Изобретение
Номер охранного документа: 0002737666
Дата охранного документа: 02.12.2020
+ добавить свой РИД