×
03.09.2019
219.017.c6b1

Результат интеллектуальной деятельности: СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике, в частности к системам терморегулирования. Система терморегулирования космического аппарата содержит два сдублированных одинаковых жидкостных контура. В каждом жидкостном контуре установлен терморегулятор расхода теплоносителя прямого действия. Он имеет один вход и два выхода, первый выход соединен с жидкостным трактом на входе в радиатор, а второй выход - с жидкостным трактом на выходе из радиатора. В жидкостном тракте между первым выходом терморегулятора и входом в радиатор установлен первый дополнительный вентиль. Участок жидкостного тракта, находящийся между первым выходом терморегулятора и входом в первый дополнительный вентиль, соединен через второй дополнительный вентиль с жидкостным трактом, соединяющим второй выход терморегулятора с выходом радиатора. Достигается улучшение массовых характеристик. Достигается улучшение работоспособности. 2 ил.

Изобретение относится к космической технике, в частности к системам терморегулирования (СТР) телекоммуникационных спутников.

В настоящее время для обеспечения теплового режима приборов служебных систем, установленных в герметичном контейнере, и приборов полезной нагрузки, расположенных вне герметичного контейнера, применяется СТР, выполненная на базе патента Российской Федерации (РФ) №2221732 [1]. Указанная СТР содержит замкнутый жидкостный контур, в котором, в частности, установлены основной и резервный терморегуляторы расхода теплоносителя прямого действия.

В случае, когда необходимо обеспечить срок активного существования на орбите КА до 10-15 лет, жидкостные контуры СТР выполняют состоящими из двух идентичных контуров: основного и резервного согласно, например, патенту РФ №2564286 [2]. Анализ показал: в этом случае нет необходимости в каждом жидкостном контуре предусматривать по два терморегулятора. Принципиальная схема СТР, оптимальной по массе, работоспособной с высокой надежностью на орбите, выполненная на базе [1], имеет вид, изображенный на фиг. 1 (второй контур условно не показан). Указанная СТР содержит замкнутый жидкостный контур с теплоносителем и включает в себя соединенные между собой трубопроводами устройства: газожидкостный теплообменник 1 с вентилятором 2, установленные в герметичном контейнере для обеспечения отвода избыточного тепла, выделяющегося при работе приборов служебных систем, установленных в нем; электронасосный агрегат 3, обеспечивающий циркуляцию теплоносителя в жидкостном контуре (имеющий в своем составе основной и резервный насосы - резервный насос включается в работу в случае отказа основного); жидкостную плату 4 приборов полезной нагрузки, предназначенную для отвода избыточного тепла, выделяющегося при работе прикрепленных к ней приборов; терморегулятор расхода теплоносителя прямого действия 5, предусмотренный в составе СТР для регулирования расхода теплоносителя через и минуя радиатор 9 в течение длительного орбитального функционирования; чувствительный элемент 5.1 терморегулятора заполнен рабочей жидкостью, установлен в потоке теплоносителя в жидкостном тракте на выходе из жидкостной платы 4; терморегулятор 5 имеет один вход и два выхода, причем второй выход «2» терморегулятора 5 соединен с жидкостным трактом на выходе из радиатора 9; первый выход «1» его сообщен с входом радиатора; датчики температуры теплоносителя 6, 7, 8; компенсатор объема 10.

В процессе разработки мощного КА авторами установлено, что в процессе заправки теплоносителем необходимо обеспечить циркуляцию теплоносителя как через жидкостные тракты панели радиатора, так и через жидкостный тракт байпаса (минуя панель радиатора). Кроме того, тепловой режим такого КА при наземных электрических испытаниях в условиях окружающего воздуха будет обеспечиваться с отводом избыточного тепла в наземную систему обеспечения теплового режима, для чего циркулирующий поток теплоносителя должен быть направлен через жидкостный тракт байпаса (минуя панель радиатора), т.к. в процессе разработки СТР мощного КА также установлено, что для обеспечения требуемого температурного режима приборов при изменении энергопотребления их от минимального до максимального (и наоборот) значений температура начала срабатывания терморегулятора (когда канал «1» его полностью закрыт при полном открытии «2») должна быть , а температура конца срабатывания (полное закрытие канала «2» при полном открытии канала «1») должна быть (20±1)°С. Имея ввиду то, что при наземных испытаниях температура окружающего воздуха поддерживается в диапазоне (24±3)°С, это означает что в схеме СТР для обеспечения изготовления и наземных испытаний необходимо предусмотреть на выходе из терморегулятора перепускные клапаны. Анализ показал, что они имеют относительно большую массу -1,35 кг и потребляют электрическую энергию (1,5 Вт). С учетом того, что в условиях штатной эксплуатации на орбите нет необходимости иметь в составе СТР перепускные клапаны, целесообразно вместо перепускных клапанов предусмотреть два дополнительных вентиля (с массой по 0,245 кг; электрическую энергию не потребляют) на выходе из терморегулятора и это позволит устранить существенные недостатки СТР [1].

Таким образом, анализ работоспособности разрабатываемой СТР с двумя сдублированными жидкостными контурами, выполненной согласно [1], показывает, что она с точки зрения обеспечения работоспособности ее в процессе изготовления и наземных испытаний имеет существенные недостатки, а именно: не обеспечивается циркуляция теплоносителя как через жидкостные тракты панели радиатора, так и через жидкостный тракт байпаса в процессе заправки теплоносителем СТР и через жидкостный тракт байпаса (минуя панель радиатора) для обеспечения требуемого теплового режима приборов с использованием наземной системы обеспечения теплового режима, т.е. СТР, выполненная согласно [1], не обеспечивает достаточно широкие функциональные возможности, необходимые при изготовлении и наземных испытаниях разрабатываемого КА.

Данное изобретение выбрано в качестве прототипа.

Поставленная цель достигается тем, что в системе терморегулирования космического аппарата, содержащей замкнутый жидкостный контур с теплоносителем, включающий в себя соединенные трубопроводами устройства: газожидкостный теплообменник с вентилятором, установленные в герметичном контейнере, электронасосный агрегат, жидкостную плату приборов полезной нагрузки, терморегулятор расхода теплоносителя прямого действия с чувствительным элементом, заполненным рабочей жидкостью, установленным в потоке теплоносителя в жидкостном тракте, имеющий один вход и два выхода, первый выход из которых соединен с жидкостным трактом на входе в радиатор, а второй выход - с жидкостным трактом на выходе из радиатора, компенсатор объема и вентили для подключения к жидкостному тракту системы заправщика в процессе заправки теплоносителем и системы обеспечения теплового режима при наземных испытаниях, в жидкостном тракте между первым выходом терморегулятора и входом в радиатор установлен первый дополнительный вентиль, а участок жидкостного тракта, находящейся между первым выходом терморегулятора и входом в первый дополнительный вентиль соединен через второй дополнительный вентиль с жидкостным трактом, идущим от второго выхода терморегулятора к выходу радиатора, что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом устройстве.

Принципиальная схема предлагаемой СТР КА приведена на фиг. 2.

Предлагаемая СТР содержит замкнутый жидкостный контур с теплоносителем и включает в себя соединенные между собой трубопроводами устройства: газожидкостный теплообменник 1 с вентилятором 2, установленные в герметичном контейнере для обеспечения отвода избыточного тепла, выделяющегося при работе приборов служебных систем, установленных в нем; электронасосный агрегат 3, обеспечивающий циркуляцию теплоносителя в жидкостном контуре (имеющий в своем составе основной и резервный насосы - резервный насос включается в работу в случае отказа основного); жидкостную плату 4 приборов полезной нагрузки, предназначенную для отвода избыточного тепла, выделяющегося при работе прикрепленных к ней приборов; терморегулятор расхода теплоносителя 5, предусмотренный в составе СТР для регулирования расхода теплоносителя через и минуя радиатор 9 в течении длительного орбитального функционирования; чувствительный элемент 5.1 терморегулятора заполнен рабочей жидкостью, установлен в потоке теплоносителя в жидкостном тракте на выходе из жидкостной платы 4; терморегулятор 5 имеет один вход и два выхода, причем второй выход «2» терморегулятора 5 соединен с жидкостным трактом на выходе из радиатора 9; первый выход «1» его сообщен с входом радиатора 9; датчики температуры теплоносителя 6, 7, 8; компенсатор объема 10; вентили 11.1-11.3, обеспечивающие стыковку заправщика 12.1 или наземной системы обеспечения теплового режима 12.2 с жидкостным контуром СТР; причем в жидкостном тракте между первым выходом терморегулятора 5 и входом в радиатор 9 установлен первый дополнительный вентиль 13, а участок жидкостного тракта, находящийся между первым выходом терморегулятора 5 и входом в первый дополнительный вентиль 13 соединен через второй дополнительный вентиль 14 с жидкостным трактом, соединяющим второй выход терморегулятора 5 с выходом радиатора 9.

Работа предложенной СТР КА происходит следующим образом. После сборки СТР и КА в целом с помощью вентилей 11.1-11.3 к первому жидкостному контуру СТР (второй жидкостный контур условно на фиг. 2 не показан) присоединяют заправщик 12.1 и жидкостные контуры заправляют теплоносителем (при этом вентили 11.1 и 11.2 открыты, а вентиль 11.3 закрыт). При проливке теплоносителя (при температуре (24±3)) минуя радиатор 9 второй дополнительный вентиль 14 открывают, а первый дополнительный вентиль 13 закрывают, при проливке через радиатор 9 положение дополнительных вентилей устанавливают наоборот. После заправки заправщик 12.1 отстыковывают от СТР КА и к первому жидкостному контуру СТР присоединяют наземную систему обеспечения теплового режима 12.2 (тепловой режим КА обеспечивается при отводе избыточного тепла при работе первого жидкостного контура). Перед включением в работу СТР КА (в частности, вентилятора и электронасосного агрегата) первый дополнительный вентиль 13 закрывают, а второй дополнительный вентиль 14 открывают; а также вентили 11.1 и 11.2 открывают, а вентиль 11.3 закрывают, тем самым обеспечив при включенной СТР циркуляцию теплоносителя через наземную систему 12.2 и минуя панель радиатора 9 (при наземных условиях панель радиатора излучением отводит недостаточное количество тепла и требуемый тепловой режим приборов не обеспечивается). В результате выполнения вышеуказанных операций с вентилями после включения в работу приборов КА осуществляется отвод избыточного тепла в работающую наземную систему обеспечения теплового режима 12.2 и обеспечивается требуемый температурный режим приборов КА.

После окончания наземных испытаний с положительными результатами отстыковывают наземную систему обеспечения теплового режима 12.2 и вентили устанавливают в положения, соответствующие функционированию СТР на орбите: первый дополнительный вентиль 13 открывают, а второй дополнительный вентиль 14 закрывают, а вентили 11.1, 11.2 закрывают, вентиль 11.3 - открывают.

В условиях эксплуатации на орбите в результате установки вентилей согласно вышеуказанному при температуре теплоносителя в районе чувствительных элементов терморегуляторов, равной и менее, весь расход теплоносителя направляется минуя жидкостные тракты радиатора 9, а при температуре теплоносителя (20±1)°С и выше полный расход теплоносителя направляется через жидкостные тракты радиатора 9; при температуре теплоносителя в диапазоне от до (20±1)°С соответствующие расходы теплоносителя направляются как через, так и минуя жидкостные тракты радиатора 9 и в результате обеспечивается требуемый температурный режим приборов во всех условиях эксплуатации КА на орбите.

Таким образом, при изготовления СТР КА, во всех условиях эксплуатации КА: при наземных условиях и условиях эксплуатации на орбите обеспечиваются требуемые функциональные возможности СТР в результате обеспечения требуемых режимов функционирования предложенной авторами оптимальной по массе и энергопотреблению конструкции жидкостных контуров СТР КА, т.е. тем самым достигаются цели изобретения.

Система терморегулирования космического аппарата, содержащая замкнутый жидкостный контур с теплоносителем, включающий в себя соединенные трубопроводами устройства: газожидкостный теплообменник с вентилятором, установленные в герметичном контейнере, электронасосный агрегат, жидкостную плату приборов полезной нагрузки, терморегулятор расхода теплоносителя прямого действия с чувствительным элементом, заполненным рабочей жидкостью, установленным в потоке теплоносителя в жидкостном тракте, имеющий один вход и два выхода, первый выход из которых соединен с жидкостным трактом на входе в радиатор, а второй выход - с жидкостным трактом на выходе из радиатора, компенсатор объема и вентили для подключения к жидкостному тракту системы заправщика в процессе заправки теплоносителем и системы обеспечения теплового режима при наземных испытаниях, отличающаяся тем, что в жидкостном тракте между первым выходом терморегулятора и входом в радиатор установлен первый дополнительный вентиль, а участок жидкостного тракта, находящийся между первым выходом терморегулятора и входом в первый дополнительный вентиль, соединен через второй дополнительный вентиль с жидкостным трактом, идущим от второго выхода терморегулятора к выходу радиатора.
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 161-170 из 193.
10.12.2019
№219.017.ebaa

Способ ликвидации космических аппаратов, уведенных с рабочих орбит в плотные слои атмосферы, и устройство для фрагментации космических аппаратов в плотных слоях атмосферы

Изобретение относится к области космической техники, а именно к способам и устройствам очистки околоземного космического пространства от космического мусора, и может быть использовано для уничтожения космических аппаратов (КА) в плотных слоях атмосферы. При ликвидации модульный КА прекращает...
Тип: Изобретение
Номер охранного документа: 0002708407
Дата охранного документа: 06.12.2019
10.12.2019
№219.017.ebb1

Механизм передачи движения

Настоящее изобретение относится к области машиностроения, а более конкретно к передачам с гибкими звеньями. Механизм передачи движения посредством двух круглых шкивов снабжен двумя гибкими звеньями и двумя свободными блоками. Одно гибкое звено имеет кинематическую связь с первым шкивом и двумя...
Тип: Изобретение
Номер охранного документа: 0002708403
Дата охранного документа: 06.12.2019
10.12.2019
№219.017.ebb5

Устройство поворота объекта

Изобретение относится к области устройств для высокоточного поворота объектов и может быть использовано для остронаправленных антенн или зубчатых венцов при сборке ротора электрической машины космического аппарата (КА). Устройство поворота объекта содержит привод, связанное с последним и...
Тип: Изобретение
Номер охранного документа: 0002708408
Дата охранного документа: 06.12.2019
10.12.2019
№219.017.ebc3

Способ увода прекративших активное существование космических аппаратов с рабочих наклонных и экваториальных орбит в плотные слои атмосферы

Изобретение относится к области космической техники, а именно к способам и устройствам очистки околоземного космического пространства от космического мусора. Способ увода прекративших активное существование космических аппаратов (КА) включает возбуждение силы Ампера непосредственно на борту...
Тип: Изобретение
Номер охранного документа: 0002708406
Дата охранного документа: 06.12.2019
12.12.2019
№219.017.ec87

Поворотный демпфер

Изобретение относится к машиностроению. Поворотный демпфер содержит корпус, с одной стороны которого устанавливается вал с возможностью вращения и без возможности осевого перемещения. На резьбовую часть вала, находящуюся внутри корпуса, навинчивается втулка с основной пружиной сжатия. Втулка...
Тип: Изобретение
Номер охранного документа: 0002708517
Дата охранного документа: 09.12.2019
13.12.2019
№219.017.ed6c

Привод шарнирного соединения для разворачивания солнечных батарей или антенн космического аппарата

Изобретение относится преимущественно, к приводам поворотных конструкций космического аппарата, например панелей солнечных батарей или антенн. Устройство представляет собой приводную пружину один конец, которой закреплен на приводном ролике, конструктивно связанном с одной из поворотных...
Тип: Изобретение
Номер охранного документа: 0002708778
Дата охранного документа: 11.12.2019
25.12.2019
№219.017.f225

Способ изготовления гибко-плоского электронагревателя

Изобретение относится к областям электротермии и космического машиностроения и может быть использовано при изготовления гибких, плоских, гибко-плоских электронагревателей, поддерживающих в работоспособном состоянии радиоэлектронную аппаратуру космического аппарата при воздействии условий...
Тип: Изобретение
Номер охранного документа: 0002710029
Дата охранного документа: 24.12.2019
24.01.2020
№220.017.f916

Способ управления движением космического аппарата

Изобретение относится к совместному управлению движением центра масс и угловой ориентацией космических аппаратов (КА) с помощью двигателей малой тяги. Двигатели расположены попарно симметрично плоскости осей крена и рысканья КА, а линии действия их тяг проходят через центр масс КА и направлены...
Тип: Изобретение
Номер охранного документа: 0002711819
Дата охранного документа: 22.01.2020
01.02.2020
№220.017.fbe6

Узел натяжения вант

Изобретение относится к космической технике, в частности к узлам натяжения вант. Узел натяжения вант содержит площадку с вантами, закрепленную между накладкой и первым кронштейном, а также второй и третий кронштейны для установки с внутренней и внешней сторон силовой конструкции корпуса. Форма...
Тип: Изобретение
Номер охранного документа: 0002712709
Дата охранного документа: 30.01.2020
17.02.2020
№220.018.0334

Способ испытаний многозвенной механической системы космического аппарата на функционирование

Изобретение относится к космической технике, а более конкретно к испытаниям элементов космического аппарата (КА). Способ испытаний многозвенной системы космического аппарата на функционирование заключается в том, что КА устанавливают на системе обезвешивания. Закрепляют на звене в точке,...
Тип: Изобретение
Номер охранного документа: 0002714283
Дата охранного документа: 13.02.2020
Показаны записи 41-47 из 47.
01.09.2019
№219.017.c575

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к области космической техники, в частности к изготовлению системы терморегулирования. Способ изготовления жидкостного контура системы терморегулирования космического аппарата включает гидравлическое соединение контура с устройством заправки; заполнение и промывку...
Тип: Изобретение
Номер охранного документа: 0002698503
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5a3

Способ испытаний системы терморегулирования космического аппарата

Изобретение относится к космической технике, в частности к наземным испытаниям космических систем. Способ испытания системы терморегулирования космического аппарата включает следующие действия. Заполнение трактов системы жидким теплоносителем. Отстыковка компенсационного устройства. Соединение...
Тип: Изобретение
Номер охранного документа: 0002698573
Дата охранного документа: 28.08.2019
25.04.2020
№220.018.18ab

Способ возведения буронабивной сваи в грунтоцементной оболочке

Изобретение относится к области строительства, а именно к возведению буронабивных свай в непосредственной близости от стоящих зданий и сооружений, и может быть использовано при формировании свайных фундаментов в слабых грунтах, а также для укрепления слабых грунтов использованием струйной...
Тип: Изобретение
Номер охранного документа: 0002720047
Дата охранного документа: 23.04.2020
04.07.2020
№220.018.2f5e

Способ возведения буронабивной сваи с грунтоцементными уширениями в зоне слабых грунтов и устройство для его осуществления (варианты)

Изобретение относятся к области строительства, а именно к способам закрепления грунтов оснований зданий и сооружений, и может быть использовано при формировании свайных фундаментов сооружений различного назначения в слабых водонасыщенных грунтах. Способ возведения буронабивной сваи с...
Тип: Изобретение
Номер охранного документа: 0002725363
Дата охранного документа: 02.07.2020
06.08.2020
№220.018.3cf1

Система терморегулирования космического аппарата

Изобретение относится к системе терморегулирования (СТР) космического аппарата. СТР содержит два замкнутых независимых жидкостных тракта с теплоносителем (один из них служит резервным). Каждый тракт включает в себя терморегулятор расхода теплоносителя с чувствительным элементом, радиатор,...
Тип: Изобретение
Номер охранного документа: 0002729149
Дата охранного документа: 04.08.2020
23.05.2023
№223.018.6ef7

Космический аппарат

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам (КА). КА содержит систему терморегулирования с приборами для отбора, подвода и сброса тепла. Кроме того, КА включает систему электропитания с солнечными батареями, комплексом автоматики и...
Тип: Изобретение
Номер охранного документа: 0002749928
Дата охранного документа: 21.06.2021
16.06.2023
№223.018.79c3

Гибко-плоский электронагреватель

Изобретение относится к области космического машиностроения и может быть использовано при изготовлении гибких, плоских, гибко-плоских электронагревателей (ЭН) космических аппаратов (КА). Технический результат - создание ЭН с увеличенным КПД для условий штатной работы в составе КА...
Тип: Изобретение
Номер охранного документа: 0002737666
Дата охранного документа: 02.12.2020
+ добавить свой РИД