×
01.09.2019
219.017.c4f4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА С ПРОТИВОМИКРОБНЫМИ СВОЙСТВАМИ НА ОСНОВЕ ОКСИДА ГРАФЕНА И НАНОЧАСТИЦ ОКСИДА МЕДИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди и может найти применение главным образом в области нанобиотехнологий и наномедицины для изготовления препаратов, подавляющих жизнедеятельность патогенных микроорганизмов. Изобретение касается способа получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди путем смешивания оксида меди с наночастицами оксида графена, согласно изобретению первоначально проводят измельчение порошка оксида меди в помольных барабанах планетарной мельницы, заполненных мелющими шарами при температуре 40-80°С на протяжении от 1 до 3 ч, после чего в полученный нанодисперсный оксид меди вводят в количестве от 20 до 40 мас. % от массы оксида меди оксид графена и синтез композиционного материала проводят в помольных барабанах при температуре 60-80°С в течение 4-6 ч. Синтез композиционного материала проводят при пониженной частоте вращения на 20-30%. Для применения полученный композитный материал разбавляют водой с концентрацией композиционного материала в растворе от 0,02 до 0,5 мас. %. Технический результат - простота в исполнении, стабильность нанокомпозита, антимикробная активность. 5 ил., 2 табл., 4 пр.

Изобретение относится к способу получения композиционного материала с антимикробными свойствами на основе оксида графена и наночастиц оксида меди и может найти применение главным образом в области биотехнологии и медицины для изготовления препаратов, подавляющих жизнедеятельность патогенных микроорганизмов.

В последние десятилетия в связи с широким использованием антибиотиков и химических консервантов ускоряется процесс появления резистентных штаммов микрофагов. Серебро, в отличие от органических (химических) консервантов и дезинфектантов, - природный элемент, не загрязняющий природу. Являясь сильным биоцидом для микробов и вирусов, серебро, в отличие от других металлов, в то же время гораздо менее токсично для многоклеточных организмов. Тогда как серебро не создает резистентных штаммов, убивая возбудителей на 100% и не давая им мутировать и размножаться. Однако у серебра существенным недостатком является не только высокая стоимость, но его дефицитность при массовом внедрении в биотехнологическую практику. Не случайно в радиоэлектронике наблюдается тенденция заменять серебрение контактов золочением. Золото дороже серебра, но не дефицитно.

Повышение резистентности различных патогенных микроорганизмов к антибиотикам является серьезной проблемой, чреватой неприятными последствиями. Проблема резистентности микроорганизмов не нова, она существовала еще до открытия первого антибиотика. В связи с широким и часто ненаправленным применением антибиотиков в последнее время особенно заметно возросло число штаммов, резистентных к одному или нескольким антибиотикам. Штаммы некоторых бактерий обладают первичной резистентностью к определенным антибиотикам (например, Pseudomonas к ампициллину), другие же, в принципе чувствительные, могут стать резистентными [1-2]. 1. Антибиотики: современная точка зрения. URL: http://www.lvrach.ru/ 1998/01/4526487/.2. Проблема резистентности (устойчивости) к антибиотикам. URL: http://biofile.ru/bio/4271.html.

Одним из перспективных направлений в решении данной проблемы является применение нанобиотехнологий, направленных на совершенствование специфических свойств наночастиц металлов, определяемых их структурной модификацией, что позволяет достигать различных биологических эффектов, в т.ч. и антибактериальных (Шульгина Т.А., Норкин И.А., Пучиньян Д.М. Антибактериальное действие водных дисперсий наночастиц серебра на грамотрицательные микроорганизмы (на примере Escherichiacoli) // Фундаментальные исследования. 2012. №7 (ч. 2). С. 424-426). Благодаря широкому нахождению в природе, выполнению разнообразных функций внутри большинства живых организмов, относительно низкой себестоимости и экологической безопасности наночастицы меди (Cu) обладают высоким потенциалом для применения в качестве антимикробного агента, заменяя серебро и композиты других благородных металлов при разработке антибактериальных средств (VeerapandianM., SadhasivamS., ChoiJ., YunK.Glucosaminefunc-tionalizedcoppernanoparticles: Preparation, characterizationandenhancementofanti-bacterialactivitybyultravioletirradiation // ChemicalEngineeringJournal. 2012. V. 209. P. 558-567).

В работе MaqusoodAhamedetal. (MaqusoodAhamed, HishamA.Alhadlaq, M.A. MajeedKhan, Ponmu-ruganKaruppiahandNaifA. Al-Dhabi.Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles // Volume 2014 (2014). ArticleID 637858. 4 p.) были исследованы антимикробные свойства наночастиц оксида меди, синтезированных методом простого осаждения. Наночастицы CuO показали отличную антимикробную активность в отношении различных штаммов бактерий (Escherichiacoli, Pseudomonasaeruginosa, Klehsiellapneumonia, Enterococcusfaecalis, Shigellaflexneri, Salmonellatyphimurium, Proteusvulgaris, Staphylococcusaureus) причем, Escherichiacoli и Enterococcusfaecalis показали наибольшую чувствительность к воздействию наночастиц меди, в то время как Klebsiellapneumonia была наименее чувствительна.

В работе греческих ученых Giannousi K., et al. (Giannousi К., Lafazanis K., Arvanitidis J., Pantazaki A., Dendrinou-Samara C. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA // Journal of Inorganic Biochemistry. 2014. V. 133. P. 24-32) исследована антибактериальная активность наночастиц меди, синтезированных гидротермальным путем, в отношении грамположительных (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus) и грамотрицательных (Xanthomonascampestris, Escherichia coli) бактерий, в зависимости от состава (CuO, Cu2O, CuO/Cu2O) и размера частиц. Результаты исследования показывают, что при воздействии различных по составу и размеру частиц проявляются видоспецифичные биологические эффекты. Наибольшую бактерицидную активность, вызывающую деградацию ДНК, проявили наночастицы оксида меди (Cu2O) в отношении грамположительных бактерий. В связи с этим дополнительно было проведен анализ производства активных форм кислорода (АФК) и перекисного окисления липидов, который показал, что количество ионов меди в дистиллированной воде и в питательной среде, ниже критического значения, подавляющего рост бактерий, что может говорить о преобладающем наноразмерном эффекте.

В работе И.В. Бабушкиной и др. (Изучение антибактериального действия наночастиц меди на клинические штаммы Staphylococcusaureus. Саратовский научно-медицинский журнал, 2010, том 6, №1, с. 11-14) установлено, что характер влияния наночастиц на рост клинических штаммов и выраженность антибактериального эффекта зависят от вида наночастиц, их концентрации, времени воздействия. Антибактериальная активность наночастиц меди выражена в широком диапазоне концентраций от 0,001 до 1 мг/мл, даже при кратковременном воздействии (30 мин) наблюдается уменьшение количества микробных клеток, выросших на твердой питательной среде, на 97-100% по сравнению с контролем. Таким образом, наночастицы меди обладают выраженным антибактериальным действием при использовании низких концентраций.

В статье Ding-Bang Xiong et al. (Ding-Bang Xiong, Mu Cao, QiangGuo, Zhanqiu Tan, Genlian Fan, Zhiqiang Li & Di Zhang High content reduced graphene oxide reinforced copper with a bioinspirednano-laminated structure and large recoverable deformation ability. ScientificReportsvolume 6, Articlenumber: 33801 (2016) DOI: 10.1038/srep33801) рассмотрен вопрос об уменьшении расхода оксида графена при изготовлении композитного материала на основе оксида графена и оксида меди за счет синергетического эффекта, возникающего при совместном использовании этих компонентов. Авторы считают, что изготовление смеси оксида графена с нанопорошком оксида меди возможна с высоким содержанием оксида графена (~45 объемных %) при изготовлении композита в виде сэндвича при одновременном снижении содержания оксида меди. Этот процесс реализован с обеспечением равномерной дисперсии и упорядочением содержания графена в металлической матрице. Установлено, что механические свойства резко возрастают, слоистый композит показал величину упругой деформации, по меньшей мере, на порядок большую, чем из чистой меди, а также наблюдалось увеличение специфической прочности из-за высокого содержания оксида графена.

Технический результат заключается в упрощении технологии, снижении затрат на изготовление композита и повышении воспроизводимости свойств получаемого композита.

Технический результат достигается способом получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди путем смешивания оксида меди с наночастицами оксида графена. Согласно изобретению, первоначально проводят измельчение порошка оксида меди в помольных барабанах планетарной мельницы, заполненных мелющими шарами, при температуре 40-80°С на протяжении от 1 до 3 ч, после чего в полученный нанодисперсный оксид меди вводят в количестве от 20 до 40 мас. % от массы оксида меди оксид графена и синтез композиционного материала проводят в помольных барабанах при температуре 60-80°С в течение 4-6 ч.

Синтез композиционного материала проводят при пониженной частоте вращения привода на 20-30%.

Для применения полученный композитный материал разбавляют водой с концентрацией композиционного материала в растворе от 0,02 до 0,5 мас. %.

Уровень техники.

Проведение первоначального измельчения порошка оксида меди в помольных барабанах планетарной мельницы, заполненных мелющими шарами, при температуре 40-80°С на протяжении от 1 до 3 ч, последующее введение в полученный нанодисперсный оксид меди вводят оксида графена в количестве от 20 до 40 мас. % от массы оксида меди и проведение синтеза композиционного материала в помольных барабанах при температуре 60-80°С в течение 4-6 ч обеспечивает:

- получение нанодисперсного оксида меди, без чего невозможен синтез композиционного материала;

- упрощение технологии синтеза композиционного материала за счет сокращения номенклатуры применяемых материалов, проведения технологического процесса в одном аппарате, сокращения продолжительности синтеза композита и уменьшение расхода воды на промывку;

- минимизацию количества применяемого оборудования и соответственно снижение капитальных затрат;

- повышении качества за счет изготовления компонентов на специализированных предприятиях.

Использование порошка оксида меди и порошка оксида графена Таунит - ОГ обеспечивают повышение качества за счет применения серийно выпускаемых продуктов.

Проведение синтеза композиционного материала при пониженной частоте вращения привода на 20-30% исключает потери, связанные с разрушением композиционного материала.

Разбавление для применения полученного композитного материала водой с концентрацией композиционного материала в растворе от 0,02 до 0,5 мас. % позволяет более эффективно использовать полученный композиционный материал

Далее приводятся данные, доказывающие возможность осуществления заявляемого способа и его эффективность.

Для осуществления изобретения применялись следующие исходные вещества.

Оксид графена (Таунит - ОГ) производства ООО НаноТехЦентр г. Тамбов представляет собой окисленные двумерные графеновые пластины толщиной до 15 нм в виде порошка. Основой оксида графена (Таунит - ОГ) является химически диспергированный графит, содержащий незначительное количество неуглеродных примесей в виде серы. Оксид графена предназначен для использования в химической и нефтеперерабатывающей промышленности в качестве сырьевого компонента для придания конечному продукту (смазочные материалы, противоизносные составы и т.д.) триботехнических и противоизносных свойств. По физико-химическим показателям оксид графена должен соответствовать нормам, указанным в табл. 1.

Оксид меди. ГОСТ 16539-79 Реактивы. Меди (11) оксид. Технические условия (с Изменениями N 1, 2) МКС 71.040.30ОКП 26 1121 1440 02, 26 1121 0630 02, Дата введения 1980-07-01. Настоящий стандарт распространяется на оксид меди (II), гранулированный и порошкообразный, который представляет собой твердые гранулы коричневато-бурого или черно-бурого цвета размером 3-5 мм (гранулированный) или тонкий порошок черного цвета (порошкообразный). Оксид меди нерастворим в воде, растворим в кислотах. Порошкообразный оксид меди (II) мало растворим в растворах солей аммония. Формула CuO Молекулярная масса (по международным атомным массам 1971 г.) - 79,54. По физико-химическим показателям оксид меди (II) должен соответствовать нормам, указанным в табл. 2.

Примечание. Реактив изготовляется в двух препаративных формах: в виде гранул (код ОКП 26 1121 1442 00) и в виде порошка (код ОКП 26 1121 0632 00).

Для воспроизведения заявляемого способа использовали планетарную мельницу, описанную в патенте на способ получения графена и устройство для его осуществления 2648424, МПК С01В 32/192, В82В 3/00, B82Y 40/00, В02С 17/08, В02С 17/10, опубл. 26.03.2018, патентообладатель ТЛГУ г. Тамбов.

Изобретение поясняется чертежами и графическими материалами, на которых показаны: на фиг. 1 изображена планетарная мельница с помольными барабанами, оси вращения которых расположены вертикально; на фиг. 2 - то же, что на фиг. 1, с осями вращения помольных барабанов, расположенными под углом оси вращения водила; на фиг. 3 - вид по стрелке А фиг. 2, вид планетарной мельницы с торца; на фиг. 4 показан вариант выполнения помольного барабана с плоской крышкой; на фиг. 5 показан вариант выполнения помольного барабана со сферической камерой. Перечень позиций, указанных на чертежах

1 водило,

2 вал,

3 привод,

4 ременная передача,

5 помольный барабан,

6 вал,

7 обойма,

8 подшипник,

9 фрикционный диск,

10 привод,

11 вал,

12 корпус подшипника,

13 подшипник,

14 основание,

15 обечайка,

16 торцовая стенка,

17 крышка,

18 мелющий шар,

19 гайка,

20 сопряжение.

Планетарная мельница работает следующим образом. Помольные барабаны 5 совершают планетарное движение за счет привода 3 водила 1 и ременной передачи 4 вокруг вала 2 установленного в подшипниках 13 и корпусе подшипника 12. Вращение от привода 10 передается через вал 11 на фрикционный диск 9 помольным барабанам 5, закрепленным на валах 6 и установленных в обоймах 7 через корпуса подшипников 8. Приводы 3 и 10 закреплены на основании 14 и обеспечивают основные режимы движения мелящих шаров и материала в кольцевой зоне сопряжения обечайки 15 и торцовой стенки 16 помольного барабана: периодических обрушений; циркуляционного; водопадного; закритического. При этом происходит истирание оксида графена и оксида меди в кольцевой зоне благодаря прилеганию мелющих шаров 18 к кольцевому сопряжению 20. Синтез композиционного материала происходит за счет сорбции оксидом графена оксида меди при механоактивации продуктов.

Следующие примеры иллюстрируют изобретение:

Пример 1. В каждый помольный барабан планетарной мельницы, заполненных мелющими шарами загружают порошок оксида меди в количестве 60 г, после чего его герметизируют и включают привод. Измельчение порошка производят при скорости вращения привода 3000 об/мин и температуре 40°С в течение 3 ч, после чего в помольный барабан вводят в количестве от 12 г оксид графена Таунит-ОГ Многослойный и синтез композиционного материала проводят при скорости вращения привода 2000 об/мин при температуре 60°С в течение 4 ч. Полученный продукт выгружали из помольных барабанов в отдельную тару. Для применения полученный композитный материал разбавляют водой с концентрацией композиционного материала в растворе до 0,5 масс. %. Выход полученного нанокомпозита составил 98% с содержанием в нем оксида меди 0.5%. Размер наночастиц оксида меди 1.4-3.0 нм по данным просвечивающей электронной микроскопии. Средний размер наночастиц 5.0 нм.

Пример 2.

В каждый помольный барабан планетарной мельницы, заполненных мелющими шарами загружают порошок оксида меди в количестве 40 г, после чего его герметизируют и включают привод. Измельчение порошка производят при скорости вращения привода 2400 об/мин и температуре 60°С в течение 4 ч, после чего в помольный барабан вводят в количестве 12 г оксид графена Таунит-ОГ Многослойный и синтез композиционного материала проводят при скорости вращения привода 1800 об/мин при температуре 80°С в течение 2 ч. Полученный продукт выгружали из помольных барабанов в отдельную тару. Для применения полученный композитный материал разбавляют водой с концентрацией композиционного материала в растворе до 0,2 мас. %. Выход полученного нанокомпозита составил 96% с содержанием в нем оксида меди 0.7%. Размер наночастиц оксида меди 2.4-3.2 нм по данным просвечивающей электронной микроскопии. Средний размер наночастиц 5,8 нм.

Пример 3.

В каждый помольный барабан планетарной мельницы, заполненных мелющими шарами загружают порошок оксида меди в количестве 40 г, после чего его герметизируют и включают привод. Измельчение порошка производят при скорости вращения привода 3000 об/мин и температуре 50°С в течение 3 ч, после чего в помольный барабан вводят в количестве 14 г оксид графена Таунит-ОГ Малослойный и синтез композиционного материала проводят при скорости вращения привода 2200 об/мин при температуре 70°С в течение 2 ч. Полученный продукт выгружали из помольных барабанов в отдельную тару. Для применения полученный композитный материал разбавляют водой с концентрацией композиционного материала в растворе до 0,5 мас. %. Выход полученного нанокомпозита составил 96% с содержанием в нем оксида меди 0.8%. Размер наночастиц оксида меди 2.4-3.2 нм по данным просвечивающей электронной микроскопии. Средний размер наночастиц 5,8 нм.

Пример 4

В каждый помольный барабан планетарной мельницы, заполненных мелющими шарами загружают порошок оксида меди в количестве 40 г, после чего его герметизуют и включают привод. Измельчение порошка производят при скорости вращения привода 2400 об/мин и температуре 60°С в течение 4 ч, после чего в помольный барабан вводят в количестве 10 г оксид графена Таунит-ОГ Малослойный и синтез композиционного материала проводят при скорости вращения привода 1800 об/мин при температуре 80°С в течение 1 ч. Полученный продукт выгружали из помольных барабанов в отдельную тару. Для применения полученный композитный материал разбавляют водой с концентрацией композиционного материала в растворе до 0,4 мас. %. Выход полученного нанокомпозита составил 96% с содержанием в нем оксида меди 0.7%. Размер наночастиц оксида меди 2.4-3.2 нм по данным просвечивающей электронной микроскопии. Средний размер наночастиц 5,8 нм.

Изучение антимикробного действия полученного нанокомпозита с содержанием оксида меди от 0 до 0,5% проводили методом двукратных серийных разведений на референтных штаммах микроорганизмов (Candidaalbicans АТСС №24433, Staphylococcusaureus АТСС №25923, Escherichiacoli АТСС №25922, Enterococcusfaecalis АТСС №22212, Pseudomonasaeruginosa АТСС №27853).

В результате проведенных экспериментов установлено, что нанокомпозит, полученный с использованием в качестве стабилизирующей матрицы оксид графена, сорбирующего нанодисперсный оксид меди обладает антимикробной активностью в отношении исследуемых штаммов микроорганизмов. В контрольных пробах, т.е. в отсутствие оксида меди, наблюдается рост тест-культур.

Предлагаемые способ обеспечивает получение композитных материалов на основе оксида графена и оксида меди с противомикробными свойствами и характеризуется простотой способа и стабильностью работы.

Способ получения композиционного материала с противомикробными свойствами на основе оксида графена и наночастиц оксида меди путем смешивания оксида меди с наночастицами оксида графена, отличающийся тем, что первоначально проводят измельчение порошка оксида меди в помольных барабанах планетарной мельницы, заполненных мелющими шарами при температуре 40-80°С на протяжении от 1 до 3 ч, после чего в полученный нанодисперсный оксид меди вводят оксид графена в количестве от 20 до 40 мас. % от массы оксида меди, синтез композиционного материала проводят в помольных барабанах при температуре 60-80°С в течение 4-6 ч при пониженной частоте вращения привода на 20-30%, и для применения полученный композитный материал разбавляют водой с концентрацией композиционного материала в растворе от 0,02 до 0,5 мас. %.
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА С ПРОТИВОМИКРОБНЫМИ СВОЙСТВАМИ НА ОСНОВЕ ОКСИДА ГРАФЕНА И НАНОЧАСТИЦ ОКСИДА МЕДИ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА С ПРОТИВОМИКРОБНЫМИ СВОЙСТВАМИ НА ОСНОВЕ ОКСИДА ГРАФЕНА И НАНОЧАСТИЦ ОКСИДА МЕДИ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА С ПРОТИВОМИКРОБНЫМИ СВОЙСТВАМИ НА ОСНОВЕ ОКСИДА ГРАФЕНА И НАНОЧАСТИЦ ОКСИДА МЕДИ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА С ПРОТИВОМИКРОБНЫМИ СВОЙСТВАМИ НА ОСНОВЕ ОКСИДА ГРАФЕНА И НАНОЧАСТИЦ ОКСИДА МЕДИ
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА С ПРОТИВОМИКРОБНЫМИ СВОЙСТВАМИ НА ОСНОВЕ ОКСИДА ГРАФЕНА И НАНОЧАСТИЦ ОКСИДА МЕДИ
Источник поступления информации: Роспатент

Показаны записи 21-22 из 22.
17.05.2023
№223.018.64ab

Способ фиксации эпидурального катетера под кожей поясничной области

Изобретение относится к области медицины, а именно к анестезиологии и интенсивной терапии и может быть использовано для фиксации эпидурального катетера в подкожном канале. Осуществляют формирование большого подкожного канала от места эпидурального доступа до выхода эпидурального катетера на...
Тип: Изобретение
Номер охранного документа: 0002794407
Дата охранного документа: 17.04.2023
23.05.2023
№223.018.6ebd

Способ получения высокотемпературных сорбентов со

Изобретение относится к получению композитных материалов на основе оксида кальция и диоксида циркония и может быть использовано для получения высокотемпературных сорбентов СО для очистки выхлопных газов промышленных предприятий от диоксида углерода. Способ получения порошкового композиционного...
Тип: Изобретение
Номер охранного документа: 0002745486
Дата охранного документа: 25.03.2021
Показаны записи 31-40 из 67.
29.12.2017
№217.015.faf0

Теплообменное устройство изолирующего дыхательного аппарата

Изобретение относится к устройствам защиты органов дыхания, в частности к составным частям изолирующих самоспасателей с химически связанным кислородом, которые применяются для экстренной кратковременной защиты органов дыхания в аварийных ситуациях, связанных с образованием непригодной для...
Тип: Изобретение
Номер охранного документа: 0002640273
Дата охранного документа: 27.12.2017
19.01.2018
№218.016.0cf6

Способ сорбционной очистки проточных промышленных технологических и сточных вод от катионов никеля на композитном сорбенте

Изобретение может быть использовано на предприятиях машиностроительной, химической, горнодобывающей промышленности и в коммунальном хозяйстве. Способ включает сорбцию адсорбентом, в качестве которого используют экологически чистый, технологичный композитный сорбент, содержащий 80 мас.%...
Тип: Изобретение
Номер охранного документа: 0002632844
Дата охранного документа: 10.10.2017
13.02.2018
№218.016.1ed9

Способ получения водного раствора полианилина

Изобретение относится к получению водных растворов полианилина. Способ получения его включает обработку полианилина водным раствором полимерного реагента. Полимерный реагент получен взаимодействием безводной серной кислоты с гексаметилентетрамином в две стадии. Полученный далее высушенный...
Тип: Изобретение
Номер охранного документа: 0002641278
Дата охранного документа: 16.01.2018
10.05.2018
№218.016.3ccc

Способ получения водного раствора полианилина

Настоящее изобретение относится к способу получения водных растворов полианилина, а также к способу получения многокомпонентных композиционных графеновых материалов на основе полианилина. Способ включает обработку полианилина водным раствором фенолформальдегидной смолы резольного типа (ФФС)....
Тип: Изобретение
Номер охранного документа: 0002647846
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.3ee1

Способ получения графена и устройство для его осуществления

Изобретения относятся к химической промышленности и нанотехнологии. Сначала порошок графита интеркалируют концентрированной серной кислотой, затем окисляют персульфатом аммония. Полученный интеркалированный графит подвергают холодному расширению при 40°С в течение 3 ч и последующему...
Тип: Изобретение
Номер охранного документа: 0002648424
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.409d

Способ получения графеносодержащих материалов и устройство для его осуществления

Изобретения относятся к химической промышленности и нанотехнологии. Сначала получают интеркалированный графит путем обработки кристаллического графита раствором персульфата аммония в серной кислоте и выдерживают его до расширения. Из полученного расширенного соединения графита получают смесь...
Тип: Изобретение
Номер охранного документа: 0002648892
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.4b46

Способ получения наномодифицирующей добавки строительного назначения

Изобретение относится к производству строительных материалов и направлено на создание модифицирующих добавок различного вида вяжущих. Способ заключается в получении наномодифицированной добавки строительного назначения, характеризуется тем, что цемент распыляют в камере синтеза совместно с...
Тип: Изобретение
Номер охранного документа: 0002651720
Дата охранного документа: 23.04.2018
11.06.2018
№218.016.6176

Сушильная установка с тепловыми аккумуляторами для растительных материалов

Изобретение относится к области сушки растительных материалов, в частности к вакуумным сушилкам периодического действия, и может быть использовано, в частности, для сушки пищевых продуктов, а именно овощей, грибов, фруктов, зелени и др. Сушильная установка с тепловыми аккумуляторами для...
Тип: Изобретение
Номер охранного документа: 0002657067
Дата охранного документа: 09.06.2018
16.06.2018
№218.016.62bb

Способ получения графена

Изобретение относится к химической промышленности и нанотехнологии. Кристаллический графит обрабатывают раствором персульфата аммония в серной кислоте, не содержащей свободной воды. Полученное интеркалированное соединение графит выдерживают до его расширения. Затем гидролизуют, промывают водой...
Тип: Изобретение
Номер охранного документа: 0002657504
Дата охранного документа: 14.06.2018
01.07.2018
№218.016.69af

Сорбент на основе модифицированного оксида графена и способ его получения

Группа изобретений относится к получению сорбентов и может быть использована для очистки сточных вод от красителей и солей тяжелых металлов. Сорбент представляет собой оксид графена, модифицированный полигидрохиноном. Способ получения сорбента включает смешение под воздействием ультразвука...
Тип: Изобретение
Номер охранного документа: 0002659285
Дата охранного документа: 29.06.2018
+ добавить свой РИД