×
27.08.2019
219.017.c3c4

РОТОР ВРАЩАЮЩЕЙСЯ ДИНАМОЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ВОЗБУЖДЕНИЕМ ОТ ПОСТОЯННЫХ МАГНИТОВ И ЕЕ ПРИМЕНЕНИЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002698323
Дата охранного документа
26.08.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области электротехники, в частности, к конструкции ротора с охлаждающими каналами. Технический результат – повышение эффективности охлаждения постоянных магнитов ротора. Ротор содержит со стаканообразный несущий узел, имеющий по меньшей мере одну цилиндрическую стенку и выполненный в виде единого целого. Несущий узел включает несущую структуру, которая выполнена как единое целое с этим несущим узлом, на наружном периметре стенки которого расположены постоянные магниты. Несущий узел в стенке имеет проходящие по существу аксиально охлаждающие каналы. Охлаждающие каналы, если смотреть в окружном направлении, выполнены закрытыми и/или открытыми радиально снаружи и на одном аксиальном конце этого несущего узла выходят в выступ, выполненный как единое целое с охлаждающими каналами, этим несущим узлом и несущей структурой. При этом охлаждающие каналы выполнены таким образом, что при вращении ротора создается эффект радиального вентилятора. 5 н. и 3 з.п. ф-лы, 10 ил.
Реферат Свернуть Развернуть

Данное изобретение касается ротора вращающейся динамоэлектрической машины с возбуждением от постоянных магнитов, вращающейся динамоэлектрической машины, а также применения такой машины.

В возбуждаемых от постоянных магнитов динамоэлектрических машинах магнитный материал постоянных магнитов в зависимости от состава сплава имеет максимально допустимый верхний предел рабочей температуры. Если он превышена, то возникает необратимое размагничивание магнитного материала, которое может разрушить ротор или же по меньшей мере существенно ухудшить рабочие характеристики динамоэлектрической машины. Недопустимый нагрев постоянных магнитов ротора при работе динамоэлектрической машины из-за потерь на вихревые токи и приток тепла через воздушный зазор от статора может предотвращаться за счет целенаправленного воздушного охлаждения ротора.

До настоящего времени такого рода вращающиеся динамоэлектрические машины снабжают радиальными или осевыми вентиляторами, которые обеспечивают воздухообмен внутри динамоэлектрической машины, в частности, через воздушный зазор и таким образом осуществляют охлаждение постоянных магнитов. Однако, охлаждение постоянных магнитов через воздушный зазор динамоэлектрической вращающейся машины во многих случая недостаточен.

Исходя из этого в основе изобретения лежит задача создания ротора динамоэлектрической вращающейся машины, который позволяет эффективное охлаждение своих постоянных магнитов, имеет сравнительно небольшой момент инерции и экономичен в изготовлении, чтобы тем самым можно было обеспечить мощный электрический привод для самых различных случаев применения.

Решение поставленной задачи достигается в роторе вращающейся динамоэлектрической машины с возбуждением от постоянных магнитов со стаканообразным несущим узлом, имеющим по меньшей мере одну цилиндрическую стенку, причем на наружном периметре стенки этого несущего узла расположены постоянные магниты, а в стенке предусмотрены проходящие, по существу, аксиально охлаждающие каналы.

Решение поставленной задачи достигается также за счет динамоэлектрической машины с ротором по любому из предыдущих пунктов формулы изобретения, причем перед ротором включен стационарно установленный входной направляющий аппарат.

Точно так же решение поставленной задачи достигается за счет станка, электромобиля, тягового привода или летательного аппарата с электрическим приводом, по меньшей мере с одной динамоэлектрической машиной.

Предлагаемая изобретением концепция охлаждения ротора реализуется с помощью большого количества аксиально расположенных каналов для охлаждающего воздуха на несущем узле. Благодаря пространственной близости каналов, по которым течет охлаждающий воздух, к постоянным магнитам обеспечивается достаточное охлаждение этих постоянных магнитов. За счет сравнительно большой поверхности охлаждающих каналов, в частности, за счет их числа или дополнительных аксиально проходящих ребер в этих охлаждающих каналах потери постоянных магнитов ротора теперь через несущий узел конвекцией передаются в транспортируемый воздух и отводятся.

Эти потери среди прочего возникают в постоянных магнитах за счет вихревых токов.

При этом охлаждающие каналы, если смотреть в окружном направлении, выполнены закрытыми или открытыми. Благодаря выполнению охлаждающих каналов открытыми получаются проходящие аксиально в направлении постоянных магнитов шлицы, которые там создают непосредственный контакт потока охлаждающего воздуха по меньшей мере с частью соответствующего постоянного магнита.

Особенно предпочтительно, если несущий узел при этом выполнен из материала с хорошей теплопроводностью, например, из алюминия.

Для снижения веса, а тем самым и инерционности ротора последний, помимо использования сравнительно легкого материала, снабжен спицеобразной несущей структурой, которая соединена с валом без возможности проворачивания. Поэтому такая несущая структура предусмотрена предпочтительно только на одном конце несущего узла.

Для отвода охлаждающего воздуха и охлаждения лобовой части обмотки по меньшей мере с одной стороны статора на одной аксиальной концевой области этого несущего узла предусмотрены ведущие наклонно наружу участки этих охлаждающих каналов, которые находятся в выступе этого несущего узла. Такой выступ, если смотреть в аксиальном направлении, наращен на одном конце цилиндрической стенки этого несущего узла. Далее, вследствие того, что охлаждающие каналы меняют свое направление, ведущие наклонно наружу участки этих охлаждающих каналов создают эффект радиального (центробежного) вентилятора, который среди прочего может также обеспечивать охлаждение лобовой части обмотки по меньшей мере с одной стороны машины.

Таким образом, предлагаемый изобретением ротор объединяет в себе функции передачи крутящего момента, транспортировки охлаждающего воздуха, а также отвода тепла из расположенных на нем постоянных магнитов.

Ротор имеет, тем самым, как в аксиальном, так и в радиальном направлении очень компактную конструкцию и может быть сравнительно просто и экономично изготовлен как обычная деталь, получаемая токарной обработкой или фрезерованием, из немагнитного, но обладающего сравнительно хорошей теплопроводностью материала, например, алюминия. Это достигается, в частности, за счет того, что согласно изобретению при таких вариантах выполнения этого несущего узла и, тем самым, ротора при изготовлении не возникает никаких поднутрений, и обрабатываемые поверхности лежат в радиально расположенных плоскостях.

Для дальнейшего снижения веса, а тем самым и инерционности ротора, этот ротор выполняют как открытый с одной стороны колоколообразный ротор или, соответственно, выполняют несущий узел в виде стаканообразного устройства.

В отношении аэрогидродинамики особенно предпочтительно, если существует предпочтительное направление вращения указанной вращающейся машины, и тогда во всасывающей области ротора располагается стационарный направляющий аппарат, который, прежде всего, во время аксиального набегания потока приводит воздух в заданное вращение в направлении ротора. Тем самым потери на входе в охлаждающие каналы этого несущего узла ротора снижаются вследствие срывов потока.

Расположенные на этом несущем узле магнитные полюса либо образуются классическими магнитами, т.е. имеются северный и южный полюса относительно воздушного зазора, либо магнитами, у которых направление потока в роторе осуществляется самими магнитами, например, в случае магнитов, намагниченных в горизонтальном направлении (lateral), или магнитов в сборке Хальбаха. Прежде всего, при классических магнитах между несущим узлом и магнитом следует дополнительно помещать магнитопроводящий слой.

Комбинация из ранее известного ротора или, соответственно, держателя магнита с аксиальными охлаждающими каналами, а также с оптимизированным в отношении потока, жестко соединенным с валом вентилятором (радиальным/аксиальным, всасывающим/нагнетающим), выполненная в виде отдельного конструктивного узла, например, с использованием технологий быстрого прототипирования, представляет собой альтернативное решение идеи данного изобретения.

Данное изобретение, а также другие предпочтительные варианты выполнения изобретения, схематично представлены на чертежах, иллюстрирующих примеры выполнения. При этом на чертежах показано следующее.

Фиг. 1 продольное сечение машины такого рода,

Фиг. 2 вид в перспективе несущего узла,

Фиг. 3 частичное продольное сечение ротора,

Фиг. 4 частичное продольное сечение ротора с входным направляющим аппаратом,

Фиг. 5 фрагмент поверхности ротора,

Фиг. 6 и Фиг. 7 частичные продольные сечения роторов с различными выступами,

Фиг. 8 - Фиг. 10 частичные поперечные сечения роторов.

На Фиг. 1 показано продольное сечение двигателя, который может использоваться в качестве привода, например, рельсового транспортного средства, летательного аппарата (воздушного судна) или станка, причем этот привод содержит динамоэлектрическую вращающуюся машину 1 с ротором 4 с постоянными магнитами. Динамоэлектрическая машина 1 при этом содержит статор 2, причем в не показанных детально, проходящих аксиально пазах пакета пластин статора 2 предусмотрена система обмотки, которая на торцевых сторонах статора 2 образует лобовые части 3 обмотки.

На расстоянии от воздушного зазора 15 статора 2 динамоэлектрической машины 1 расположен ротор 4, который на поверхности несущего узла 5 ротора 4 содержит постоянные магниты 8. На наружном периметре выполненного стаканообразным несущего узла 5, который по меньшей мере на отдельных участках имеет форму цилиндра и обращен к воздушному зазору 15, находятся указанные постоянные магниты 8. Несущий узел 5 посредством несущей структуры 6 соединен с валом, который установлен с возможностью вращения вокруг оси 9.

Несущая структура 6 образует часть этого несущего узла 5. При выполнении этого несущего узла 5 в виде единого целого, он содержит по меньшей мере указанную несущую структуру 6, охлаждающие каналы 7 и выступ 16.

Радиально под постоянными магнитами 8 предусмотрены проходящие, по существу, аксиально каналы 7, которые по меньшей мере на одном конце имеют загиб или, соответственно, выступ 16, и, соответственно, по одному выпускному отверстию 12, и тем самым при вращении ротора 4 создают эффект радиального вентилятора, который дополнительно охлаждает по меньшей мере одну лобовую часть 3 обмотки статора 2 или по меньшей мере обеспечивает завихрение воздуха в этой области.

На один магнитный полюс при этом в принципе, если смотреть в аксиальном и/или в окружном направлении, предусмотрен по меньшей мере один постоянный магнит 8. Кроме того, если смотреть по аксиальной длине ротора, предусмотрено ступенчатое расположение или скашивание магнитных полюсов, поскольку это необходимо для работы динамоэлектрической вращающейся машины без моментов от зубцовых гармонических помех поля.

На Фиг. 2 показан вид в перспективе несущего узла 5, который выполнен в виде единого целого, и на котором видны аксиально проходящие охлаждающие каналы 7 и выступ 16 с его выпускными отверстиями 12 на одном аксиальном конце этого несущего узла 5.

Несущий узел 5 как в аксиальном, так и в радиальном направлении имеет, таким образом, очень компактную конструкцию и может быть сравнительно просто и экономично изготовлен в виде обычной детали, получаемой токарной обработкой или фрезерованием, из немагнитного, но имеющего сравнительно хорошую теплопроводность материала, например, из алюминия. Это обеспечивается, в частности, благодаря тому, что при таком варианте выполнения этого несущего узла 5 и, тем самым, ротора 4 при изготовлении не возникают поднутрения, и обрабатываемые поверхности лежат в радиально расположенных плоскостях.

На Фиг. 3 детально показан фрагмент ротора 4, который радиально под своими постоянными магнитами 8 имеет выемки 7, работающие как охлаждающие каналы 7. На аксиально другой стороне ротора 4 эти охлаждающие каналы 7 содержат по одному направленному наружу загибу, который заканчивается в выпускном отверстии 12.

Форма выступа 16 задается, по существу, двумя углами α, ß. Путем задания этих углов α, ß оказывается влияние на шумообразование, на направление потока из выпускного отверстия 12, на эффект радиального вентилятора и на всасывающее действие этого несущего узла 5, и, тем самым ротора 4.

В дополнение к ротору 4 по Фиг. 3 при работе динамоэлектрической машины 1 с предпочтительным направлением вращения перед ротором 4 в направлении потока аксиально подключен стационарный направляющий аппарат 10 по Фиг. 4, который должен снижать вентиляционные потери входящего в несущий узел 5 охлаждающего воздуха. Это дает особые преимущества при предпочтительном направлении вращения динамоэлектрической машины 1.

На Фиг. 5 показан еще один вариант выполнения постоянного магнита 8, расположенного на промежуточном слое, который выполнен предпочтительно шихтованным, чтобы можно было лучше направлять магнитный поток. При этом речь идет о своего рода шихтованном пакете 11, который позиционирован на этом несущем узле 5, например, насажен в горячем состоянии. Этот вариант выполнения следует применять особенно при классических магнитах, у которых, в зависимости от расположения на стенке этого несущего узла 5, северный и южный полюса обращены к воздушному зазору 15.

На Фиг. 6 и Фиг. 7 показаны различные варианты выполнения ротора 4 в отношении выступа 16 или, соответственно, выпускного отверстия 12.

Форма выступа 16 здесь тоже задается, по существу, двумя углами α, ß. Путем задания этих углов α, ß оказывается влияние на шумообразование, на направление потока из выпускного отверстия 12, на эффект радиального вентилятора и на всасывающее действие этого несущего узла 5, и, тем самым, ротора 4.

На Фиг. 8 показано частичное поперечное сечение ротора 4 с двумя магнитными полюсами 14, разделенными межполюсным пространством 13, причем, с одной стороны, северный полюс (N) и у соседнего магнита южный полюс (S) обращены к воздушному зазору 15. Ответные им полярности соответственно обращены к стенке этого несущего узла 5. Чтобы обеспечить проведение магнитного потока в случае таких постоянных магнитов 8, между стенкой этого несущего узла 5 и постоянными магнитами 8 следует предусмотреть магнитопроводящий материал, если несущий узел 5 выполнен из материала с недостаточной магнитной проводимостью. При этом речь идет о своего рода шихтованном пакете 11, который позиционирован на этом несущем узле 5, например, насажен в горячем состоянии. На этом шихтованном пакете 11 в таком случае зафиксированы постоянные магниты 8. На один магнитный полюс 14 предусмотрен при этом, если смотреть в аксиальном и/или радиальном, и/или в окружном направлении, по меньшей мере один постоянный магнит 8.

Фиг. 9 и Фиг. 10 различаются только формой охлаждающих каналов 7. На Фиг. 9 они замкнуты, если смотреть в окружном направлении. На Фиг. 10 они в направлении постоянного магнита 8 или, соответственно, воздушного зазора 15 по меньшей мере частично открыты радиально.

На Фиг. 9 и Фиг. 10, если смотреть в окружном направлении, на одном магнитном полюсе 14 отдельные магниты имеют различные направления 18 намагниченности. Таким образом «настраивается» ход магнитного потока на полюс 14.

В идеале эти постоянные магниты 8 намагничены в горизонтальном направлении (lateral). Таким образом, шихтованный пакет 11 для направления потока согласно вариантам выполнения по Фиг. 9 и Фиг. 10 больше не является обязательно необходимым.

Постоянные магниты 8 расположены в основном на поверхности указанного несущего узла 5, т.е. на стенке, обращенной к воздушному зазору 15. Там они закрепляются и фиксируются с помощью клея и/или бандажей.

Охлаждающие каналы 7 в своем аксиальном прохождении вплоть до выпускного отверстия 12 выполнены с почти идентичным поперечным сечением. Для достижения улучшенного охлаждающего эффекта охлаждающие каналы 7 в своем аксиальном прохождении выполнены с расширением поперечного сечения, что, естественно, может сопровождаться лишь уменьшением ширины перемычек 17. Точно так же изменение поперечного сечения по аксиальному прохождению может выражаться, например, в переходе от скругленного к угловатому, как это показано, например, на Фиг. 2.

Далее, количество охлаждающих каналов 7 напрямую увязано с шириной полюса 14. При межполюсном пространстве 13 согласно варианту выполнения по Фиг. 8 ширина перемычки 17 может быть затем увеличена.

Такого рода динамоэлектрическая машина 1 с предлагаемым изобретением ротором 4, среди прочего, вследствие своей небольшой массы, а тем самым и инерционности этого несущего узла 5, и эффективности охлаждения расположенных там постоянных магнитов 8 может применяться, прежде всего, в серийных машинах, например, станках, электрических приводах в транспортных средствах, например, электромобилях, тяговых приводах подземных самосвалов или рельсовых транспортных средств, и в летательных аппаратах с электрическим приводом.


РОТОР ВРАЩАЮЩЕЙСЯ ДИНАМОЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ВОЗБУЖДЕНИЕМ ОТ ПОСТОЯННЫХ МАГНИТОВ И ЕЕ ПРИМЕНЕНИЕ
РОТОР ВРАЩАЮЩЕЙСЯ ДИНАМОЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ВОЗБУЖДЕНИЕМ ОТ ПОСТОЯННЫХ МАГНИТОВ И ЕЕ ПРИМЕНЕНИЕ
РОТОР ВРАЩАЮЩЕЙСЯ ДИНАМОЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ВОЗБУЖДЕНИЕМ ОТ ПОСТОЯННЫХ МАГНИТОВ И ЕЕ ПРИМЕНЕНИЕ
РОТОР ВРАЩАЮЩЕЙСЯ ДИНАМОЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ВОЗБУЖДЕНИЕМ ОТ ПОСТОЯННЫХ МАГНИТОВ И ЕЕ ПРИМЕНЕНИЕ
РОТОР ВРАЩАЮЩЕЙСЯ ДИНАМОЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ВОЗБУЖДЕНИЕМ ОТ ПОСТОЯННЫХ МАГНИТОВ И ЕЕ ПРИМЕНЕНИЕ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 1 427.
20.06.2013
№216.012.4bcf

Способ определения скорости транспортного средства во время процесса торможения

Изобретение относится к способу определения скорости рельсового транспортного средства во время процесса торможения. С помощью давления р в устройстве торможения определяют силу F торможения и с помощью силы F торможения определяют скорость v рельсового транспортного средства. В качестве...
Тип: Изобретение
Номер охранного документа: 0002484989
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4ca9

Способ маскировки охладительных отверстий и устройство для использования в процессе маскировки охладительных отверстий

Изобретение относится к способам маскировки охладительных отверстий компонента турбины, содержащего наружную поверхность, внутреннюю полость, имеющую отверстие наружу компонента, и охладительные отверстия, проходящие от внутренней полости к наружной поверхности. Заполняют охладительные...
Тип: Изобретение
Номер охранного документа: 0002485207
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d25

Способ и устройство для преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию

Изобретение относится к преобразованию тепловой энергии низкотемпературного источника тепла в механическую энергию. Способ преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию в замкнутом циркуляционном контуре, при котором жидкая рабочая среда нагревается...
Тип: Изобретение
Номер охранного документа: 0002485331
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d40

Кольцевой диффузор для осевой турбинной машины, система для осевой турбинной машины, а также осевая турбинная машина

Кольцевой диффузор осевого компрессора турбинной машины содержит наружную стенку (44) и коаксиальную ей внутреннюю стенку (48). Между стенками проходит диффузорный канал (42) кольцеобразно вдоль осевой длины от расположенного на стороне входа потока конца (52) с расширением к расположенному на...
Тип: Изобретение
Номер охранного документа: 0002485358
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d48

Узел гидродинамического ленточного подшипника

Изобретение относится к узлу гидродинамического ленточного подшипника для использования во вращающихся машинах. Узел гидродинамического ленточного подшипника содержит корпус (3) подшипника, содержащий отверстие (4) для обеспечения протекания текучей среды в корпус (3), по меньшей мере, один...
Тип: Изобретение
Номер охранного документа: 0002485366
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4dc5

Газовый датчик

Изобретение относится к газовым датчикам, используемым во многих областях техники для удовлетворения растущих требований по экологии и безопасности. Изобретение касается комбинированного газового датчика, содержащего электрохимический газовый датчик с первым и вторым электродами и резистивный...
Тип: Изобретение
Номер охранного документа: 0002485491
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e69

Устройство с телом из изоляционного материала, а также способ изготовления тела из изоляционного материала

Тело (1a, 1b, 1c, 1d) из изоляционного материала содержит отверстие (3а, 3b, 3с, 3d) под проводник, которое пересекает насквозь тело (1a, 1b, 1c, 1d) из изоляционного материала. Тело (1a, 1b, 1c, 1d) из изоляционного материала ограничено окружающей поверхностью (13). Выемка (4а, 4b, 4c, 4d, 4e)...
Тип: Изобретение
Номер охранного документа: 0002485655
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5113

Секция ротора для ротора турбомашины, рабочая лопатка для турбомашины

Секция ротора для ротора турбомашины содержит предусмотренные на наружном периметре распространяющиеся в осевом направлении ротора крепежные пазы для рабочих лопаток. В каждом из крепежных пазов установлена одна рабочая лопатка ножкой лопатки, соответствующей крепежному пазу для рабочей...
Тип: Изобретение
Номер охранного документа: 0002486348
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5114

Уплотнительный гребень, узел лопаток турбины и газовая турбина, содержащая такой узел лопаток

Уплотнительный гребень узла лопаток газовой турбины содержит прямой участок и участок с изгибом, при этом ширина участка с изгибом меньше ширины прямого участка. Участок с изгибом включает в себя два изогнутых участка и два прямых участка. Угол между прямым участком и прямым участком участка с...
Тип: Изобретение
Номер охранного документа: 0002486349
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.514c

Способ и устройство для регулирования температуры пара для паросиловой установки

Изобретение относится к энергетике. Способ для регулирования температуры пара для паросиловой установки, при котором регулятор состояния для выдачи заданной температуры пара подает по обратной связи в качестве регулирующего воздействия несколько состояний пара в перегревателе для перегрева пара...
Тип: Изобретение
Номер охранного документа: 0002486405
Дата охранного документа: 27.06.2013
Показаны записи 1-5 из 5.
12.01.2017
№217.015.58f0

Предохранительная фрикционная муфта с автоматическим выключением при длительной перегрузке

Изобретение относится к области машиностроения, а именно к предохранительным фрикционным муфтам с автоматическим выключением при продолжительной перегрузке. Муфта имеет пару элементов (1, 3) сцепления, которые установлены с возможностью вращения вокруг общей оси (4). Элемент (1, 3)...
Тип: Изобретение
Номер охранного документа: 0002588318
Дата охранного документа: 27.06.2016
24.07.2018
№218.016.747a

Привод рельсового подвижного состава, имеющий тормозную систему

Группа изобретений относится к области рельсовых транспортных средств. Привод единицы рельсового подвижного состава содержит два ведущих колеса, вращающихся вокруг оси и соединенных осью колесной пары. Осепараллельно расположен вращающийся вокруг другой оси вал динамоэлектрической машины. Ось...
Тип: Изобретение
Номер охранного документа: 0002662109
Дата охранного документа: 23.07.2018
11.09.2018
№218.016.85e7

Поворотная тележка, имеющая привод колесной пары, опертый на опорные узлы

Изобретение относится к поворотной тележке. Поворотная тележка (6) имеет раму (7) ходовой части. Рама (7) ходовой части посредством первого рессорного устройства (7a) подрессоренным образом оперта на опорные узлы (7b). В опорных узлах (7b) оперта ось (8) колесной пары. Привод (9) колесной пары...
Тип: Изобретение
Номер охранного документа: 0002666504
Дата охранного документа: 07.09.2018
29.03.2019
№219.016.f298

Проскальзывающая муфта для по меньшей мере одного ходового колеса самодвижущейся единицы подвижного состава на рельсовом ходу

Изобретение относится к машиностроению, а именно к проскальзывающим муфтам. На валу самодвижущейся единицы подвижного состава на рельсовом ходу закреплено два ходовых колеса, приводимых в действие посредством двигателя. Проскальзывающая муфта ходового колеса содержит кольцеобразные...
Тип: Изобретение
Номер охранного документа: 0002376176
Дата охранного документа: 20.12.2009
03.07.2019
№219.017.a3e0

Двухосный привод

Изобретение относится к электрическим передачам для локомотивов. Двухосный привод содержит тяговый двигатель и передачу. Тяговый двигатель размещен между двумя ведущими осями. Ось вращения тягового двигателя проходит поперечно, в частности перпендикулярно к ведущим осям. Причем посредством...
Тип: Изобретение
Номер охранного документа: 0002693178
Дата охранного документа: 01.07.2019
+ добавить свой РИД