×
23.08.2019
219.017.c32b

Результат интеллектуальной деятельности: Способ определения мощности ядерного взрыва

Вид РИД

Изобретение

Аннотация: Изобретение относится к области построения и функционирования измерительных информационных систем обнаружения и засечки ядерных взрывов. Способ определения мощности ядерного взрыва содержит этапы, на которых одновременно измеряют сигнал в оптическом диапазоне длин волн и сигнал от ионизирующего излучения, при этом аппаратно или программно дифференцируют сигналы, полученные от каналов измерения оптического сигнала и сигнала ионизирующего излучения, а мощность взрыва определят по величине смещения точки пересечения графиков производных функций сигналов ионизирующего и оптического излучения. Технический результат – повышение точности и достоверности определения параметров ядерного взрыва, в том числе его мощности. 2 ил.

Изобретение относится к области построения и функционирования измерительно-информационных систем обнаружения и засечки ядерных взрывов. Обнаружение ядерных взрывов необходимо для наблюдения за испытаниями ядерного оружия за рубежом и контроля соблюдения договоров о запрещении ядерных испытаний.

В настоящее время определение основных параметров ядерного взрыва осуществляется по данным радиотехнического метода, сейсмического метода и светотехнического метода. Сложность определения мощности ядерного взрыва по данным радиотехнического метода заключается в том, что характеристики электромагнитного излучения в эпицентре (наиболее полно отражающие энергетику источника) существенно отличаются от тех, которые регистрируются в точке обнаружения. Эмпирические же данные, полученные в ходе проведения испытаний ядерного оружия, систематизированы для некоторого расстояния от эпицентра. Следовательно, в лабораториях специального контроля и вычислительных центрах необходимо использовать методики пересчета параметров, зарегистрированных электромагнитных импульсов на этом расстоянии с последующим определением параметров взрыва. В системах сейсмического контроля процесс определения мощности ядерного взрыва проводится в три этапа: расчет магнитуды по сейсмическому сигналу, внесение поправок для учета различий в геологическом строении каждого испытательного полигона, преобразование магнитуды в оценку мощности.

Для определения мощности ядерного взрыва светотехническим методом могут быть использованы следующие три способа [1].

1. Способ, основанный на измерении радиуса светящейся области r(t) в фиксированные относительно начала ядерного взрыва моменты времени или на измерении скорости развития светящейся области Способ характеризуется высокой точностью (σq≤0,07q), применяется при полигонных испытаниях. В станциях засечки применения не нашел, поскольку необходимо фотографировать светящуюся область через малые промежутки времени.

2. Способ определения мощности ядерного взрыва по размерам изображения светящейся области на дневной (аристотипной) фотобумаге.

3. Способы, основаны на измерении информативных параметров оптического сигнала ядерного взрыва. При этом к информативным параметрам оптического сигнала относят: tКНФ - время конца начальной фазы развития световой области; tК1Ф - время конца первой фазы развития световой области; t2max - время наступления второго максимума оптического сигнала ядерного взрыва. На измерении tКНФ основан способ «первого максимума». На измерении tК1Ф основан способ минимума, а на измерении t2max - способ «второго максимума».

Способы, описанные в [1], используют один канал измерения, дифференцирование формы полученных сигналов как функции времени и координат не осуществляют.

В [2] разработан метод и устройство, которые обеспечивают за одно измерение определение мощности и направления на центр ядерного взрыва по его световому излучению. Метод основан на автоматическом определении длительности первой фазы светового излучения ядерного взрыва и сигналов, порожденных импульсами излучения, от двух плоских кремниевых фотодиодов, размещенных под углом друг к другу. Указанный способ [2] использует один канал измерения, дифференцирование формы сигнала не осуществляет.

Наиболее близким по сущности к заявляемому способу является способ, который реализуют в устройстве регистрации импульсного ионизирующего и импульсного оптического излучения с передачей сигнала по ВОЛС [3]. Устройство прототипа регистрирует импульсное ионизирующее и импульсное оптическое излучение микро-, наносекундного временных диапазонов, передает полученный сигнал по волоконно-оптическим линиям связи с использованием внешней модуляции излучения к устройству обработки информации и осуществляет точное восстановление формы регистрируемого импульсного ионизирующего или импульсного оптического излучения по оптическому аналогу. Устройство [3] содержит: лазерный модуль (источник оптического излучения); электрооптический модулятор интенсивности по схеме интерферометра Маха-Цандера; приемник оптического излучения (например, фотодиод или хронографический электронно-оптический регистратор (ЭОР)); источник питания для подачи постоянного напряжения на электроды сдвига модулятора; электроды сдвига модулятора; электрический сигнальный вход модулятора; оцифровщик (например, осциллограф, если в качестве приемника оптического излучения используется фотодиод, или ПЗС-регистратор, если в качестве приемника оптического излучения используется хронографический ЭОР); фотоэлемент (например, фотоэлектронный умножитель сцинтилляционного детектора ионизирующего излучения или полупроводниковый чувствительный элемент); источник калибровочного оптического сигнала, электрический аналог калибровочного оптического сигнала; электрический аналог регистрируемого информационного сигнала; изменение оптического сигнала на выходе модулятора, вызванное калибровочным электрическим сигналом, изменение оптического сигнала на выходе модулятора, вызванное приходом информационного электрического сигнала; входное одномодовое волокно; выходное одномодовое волокно; регистрируемый информационный сигнал (например, импульсное ионизирующее излучение или импульсное оптическое излучение); калибровочный оптический сигнал.

Таким образом, прототип содержит два независимых канала измерения: каналы ионизирующего и оптического излучения, но способ определения параметров ядерного взрыва в силу состава используемых для его реализации технических средств не осуществляет определение его мощности. Также способ прототипа не использует дифференцирование формы полученных сигналов, что снижает его точность и достоверность.

Задачей предлагаемого способа является повышение точности и достоверности определения параметров ядерного взрыва, в том числе, его мощности. Задачу решают путем измерения формы сигнала как в оптическом диапазоне (ультрафиолетовом, видимом и инфракрасном) длин волн, так и в диапазоне ионизирующего излучения (рентгеновского, гамма-излучения), затем формы сигналов как функции времени дифференцируют аппаратно или программно. Известно, что использование производных от функций, имеющих достаточно монотонный вид для повышения точности определения связи значения измеряемой величины со значением аргумента оказалось высоко эффективным способом при исследовании спектров первоначально твердых тел [4], а в последствии широко применяют при спектральном анализе различных физических процессов. Мощность ядерного взрыва по заявляемому способу однозначно и с высокой точностью определяют по величине смещения точки пересечения графиков производных от функций сигналов ионизирующего и оптического излучения. На фиг. 1 представлены зависимости интенсивности гамма и светового импульса ядерного взрыва (100 кт в тротиловом эквиваленте) от времени, а также их производные, взятые по модулю. На фиг. 2 приведен пример смещения точек пересечения производных функций интенсивности светового импульса и гамма-излучения ядерного взрыва с различным тротиловым эквивалентом (ТЭ). Достоверность заявляемого способа достигают за счет использования двух независимых спектральных каналов регистрации излучения взрыва.

Реализация заявляемого способа может быть осуществлена с помощью полупроводникового комбинированного приемника электромагнитного излучения [5].

Литература

1. Г.А. Ивойлов, А.В. Скуридин, М.Ю. Дорофеев. Измерительные информационные системы. Москва.: Военная академия Ракетных войск стратегического назначения, 2008. 272 с.

2. И.Ю. Чернявский, А.Н. Григорьев, З.В. Билык, В.Б. Матыкин. Применение кремниевых PIN детекторов для регистрации параметров ядерного взрыва. 2016, №4 (48).

3. Игнатьев Н. Г., Крапива П.С., Короткое К.Е., Москаленко И.Н. Устройство регистрации импульсного ионизирующего и импульсного оптического излучения с передачей по ВОЛС. Патент на изобретение RU 2 620 589, 2017 г. Опубликовано: 29.05.2017. Бюл. №16.

4. М. Кардона. Модуляционная спектроскопия. Москва: «Мир», 1972 г, 414 с.

5. Средин В.Г., Войцеховский А.В., Васильева Ю.В. Полупроводниковый комбинированный приемник электромагнитного излучения. Патент на изобретение RU 2578103, 2016 г.

Способ определения мощности ядерного взрыва, заключающийся в том, что одновременно измеряют сигнал в оптическом диапазоне длин волн и сигнал от ионизирующего излучения, отличающийся тем, что аппаратно или программно дифференцируют сигналы, полученные от каналов измерения оптического сигнала и сигнала ионизирующего излучения, а мощность взрыва определяют по величине смещения точки пересечения графиков производных функций сигналов ионизирующего и оптического излучения.
Способ определения мощности ядерного взрыва
Способ определения мощности ядерного взрыва
Способ определения мощности ядерного взрыва
Источник поступления информации: Роспатент

Показаны записи 11-20 из 50.
20.06.2019
№219.017.8cc3

Система передачи информации с использованием радио- и оптико-электронных каналов

Изобретение относится к радиотехнике и может использоваться для передачи информации абонентам двигающимся на траекториях в зоне прямой видимости друг от друга. Технический результат состоит в расширении функциональных возможностей системы передачи командной или связной информации группе...
Тип: Изобретение
Номер охранного документа: 0002691759
Дата охранного документа: 18.06.2019
22.06.2019
№219.017.8e5c

Устройство автоматического включения резерва

Использование: в области электротехники. Технический результат - обеспечение бесперебойного электропитания ответственных потребителей при переключениях с основного источника электропитания переменного тока на резервный, а также улучшение качества электрической энергии на шинах ответственных...
Тип: Изобретение
Номер охранного документа: 0002692085
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.9224

Энергонасыщенный взрывчатый материал

Изобретение относится к энергонасыщенным материалам, в том числе взрывчатым материалам смесевого типа. Материал включает два невзрывчатых в индивидуальном виде компонента: горючий компонент - графит и окислительный компонент - нитрат лития. Компоненты взяты в соотношении, близком к...
Тип: Изобретение
Номер охранного документа: 0002692317
Дата охранного документа: 24.06.2019
03.07.2019
№219.017.a402

Удлиненный кумулятивный заряд

Изобретение относится к области взрывных работ и может найти применение при разделке на металлолом громоздких металлических конструкций, реконструкции и демонтаже бетонных и железобетонных сооружений, плановой ликвидации вооружения и военной техники, ликвидации аварийных ситуаций. Согласно...
Тип: Изобретение
Номер охранного документа: 0002693065
Дата охранного документа: 01.07.2019
10.07.2019
№219.017.a991

Устройство для перебора перестановок

Изобретение относится к области вычислительной техники, предназначенной для формирования в произвольной последовательности перестановок двоичных кодов. Технический результат заключается в повышении надежности работы устройства для перестановок двоичных кодов. Технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002693996
Дата охранного документа: 08.07.2019
23.07.2019
№219.017.b715

Способ определения параметров динамического деформирования металлических материалов

Изобретение относится к измерительной технике и может быть использовано для исследований параметров динамического деформирования металлических материалов в авиационной и космической технике. Сущность: регистрируют электромагнитное поле, возникающее при динамическом деформировании тел, например...
Тип: Изобретение
Номер охранного документа: 0002695024
Дата охранного документа: 18.07.2019
23.08.2019
№219.017.c333

Космический телескоп для наблюдения звезд и земли с наиболее четким качеством изображения

Телескоп может быть использован в качестве вспомогательного средства определения космических аппаратов. Космический телескоп для наблюдения звезд и Земли содержит канал наблюдения Земли, имеющий главное зеркало, на часть которого, закрытую зеленым отражающим светофильтром, попадает свет от...
Тип: Изобретение
Номер охранного документа: 0002698077
Дата охранного документа: 21.08.2019
02.10.2019
№219.017.cb23

Способ прогнозирования состояния группы подвижных объектов

Изобретение относится к области вычислительной техники и может быть использовано для прогнозирования состояния группы подвижных объектов военного назначения. Техническим результатом является автоматический расчет значений, характеризующих местоположение, состояние и вероятность обнаружения...
Тип: Изобретение
Номер охранного документа: 0002701091
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cbe4

Способ ситуационного анализа устойчивости технической системы с многоэтапным характером целевого применения

Изобретение относится к компьютерно-реализуемому способу ситуационного анализа устойчивости технической системы с многоэтапным характером целевого применения. Технический результат заключается в автоматизации анализа устойчивости технической системы. Способ основан на классификации этапов...
Тип: Изобретение
Номер охранного документа: 0002701089
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cca7

Устройство нечетко-случайного моделирования сценариев развития ситуации

Изобретение относится к области автоматизации систем и автоматического управления. Технический результат заключается в обеспечении возможности моделирования сценария развития текущей ситуации с учетом нечетких критериев оценки прогнозируемых ситуаций. Технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002701093
Дата охранного документа: 24.09.2019
Показаны записи 11-11 из 11.
03.09.2019
№219.017.c684

Энергоэффективное устройство лазерной резки материалов

Энергоэффективное устройство лазерной резки материалов может быть использовано для оперативного и высокоточного изготовления сложноконтурных деталей из листовой заготовки. Сущность изобретения заключается в том, что устройство содержит источник питания, лазерный излучатель, оптические элементы,...
Тип: Изобретение
Номер охранного документа: 0002698896
Дата охранного документа: 02.09.2019
+ добавить свой РИД