×
22.08.2019
219.017.c21e

Результат интеллектуальной деятельности: Магнитоэлектрический генератор

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники и может быть использовано в качестве генератора электрической энергии для автономных объектов, гибридных силовых установках и т.д. Магнитоэлектрический генератор имеет шесть фаз и содержит корпус, в который запрессован сердечник магнитопровода статора, выполненный из изолированных листов электротехнической стали, катушку, установленную в пазы сердечника статора, ротор, состоящий из немагнитной втулки, вала и постоянных магнитов на внешней части немагнитной втулки. Сердечник статора имеет двадцать четыре паза и четырнадцать полюсов, а катушка, установленная в пазы сердечника статора, имеет зубцовый, концентрический тип с минимальными лобовыми вылетами. В каждый паз сердечника статора вмонтирован ферромагнитный клин; постоянные магниты ротора зашихтованы в аксиальном направлении и имеют "трапециедальную" форму; на внешнюю часть ротора установлен немагнитопроводящий бандаж. 10 ил.

Изобретение относится к области электромашиностроения и может быть использовано в качестве генератора электрической энергии для автономных объектов, гибридных силовых установках и. т.д.

Известна индукторная электрическая машина [патент RU, 2009599 С1, МПК 5 Н02K 19/06, Н02K 19/24, опубликовано 15.03.1994], содержащая явнополюсный с числом полюсов Z0 зубчатый статор с многофазной катушечной обмоткой, каждая катушка которой размещена на одном полюсе статора, безобмоточный ферромагнитный зубчатый ротор и преобразователь, к которому подключена обмотка статора, статор и ротор выполнены с четными и не равными друг другу числами зубцов и каждая фаза обмотки выполнена из р встречно включенных катушек, размещенных со сдвигом на двойное полюсное деление 2⋅τ, где р - число четное, 2⋅τ=Z0/p.

Недостатком аналога является невысокие энергетические показатели. Кроме этого, указанные технические устройства чаще всего выполняют с малыми воздушными зазорами, что усложняет технологию и затрудняет их изготовление при массовом (серийном) производстве.

Известна бесконтактная магнитоэлектрическая машина [патент RU, 2354032 С1, МПК Н02K 21/12, Н02K 29/00, опубликовано 27.04.2009], содержащая якорь с числом зубцов Z1=m⋅Z1m⋅c, где m=2, 3, 4, 5, 6 … - число фаз обмотки якоря, каждая из фаз состоит из катушек, охватывающих по одному зубцу якоря, и индуктор с полюсами, сердечник индуктора состоит из скрепленных между собой первого и второго сердечников и намагниченного в осевом направлении постоянного магнита, расположенного между сердечниками индуктора, первый и второй сердечники индуктора размещены друг относительно друга так, что ось каждого зубца первого сердечника совпадает с осью каждого паза второго сердечника индуктора, бесконтактная магнитоэлектрическая машина состоит из модулей - «элементарных машин», число зубцов на любом сердечнике индуктора Z2N=Z2S=(m⋅Z1m±1)⋅c, где с=1, 2, 3, 4 … - число модулей, Z1m=1, 2, 3, 4 … - число зубцов фазы якоря в одном модуле.

Недостатком данной бесконтактной магнитоэлектрической машины является не достаточно полное использование полезного объема машины по сравнению с заявляемым изобретением.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является бесконтактная модульная синхронная магнитоэлектрическая машина [патент RU, 2414794 C1, МПК H02K 21/12, H02K 19/10, H02K 19/16, H02K 29/00, опубликовано 20.03.2011], имеющая шесть фаз и содержащая корпус, в который запрессован сердечник магнитопровода статора выполненного из изолированных листов электротехнической стали, катушку установленную в пазы сердечника статора, ротор, состоящий из немагнитной втулки, вала и постоянных магнитов на внешней части немагнитной втулки.

Недостатками данной бесконтактной модульной синхронной магнитоэлектрической машиной является сложность конструкции, ограниченные функциональные возможности, малая удельная мощность, высокие потери на вихревые токи в постоянных магнитах ротора, низкая надежность в ввиду отсутствия бандажной оболочки, "падающая" внешняя характеристика из-за высоких значений индуктивных сопротивлений магнитной системы ротора.

Задача изобретения - расширение функциональных возможностей, благодаря повышению выходной мощности при неизменных массогабаритных показателях, повышение эффективности и удельных показателей, благодаря минимизации потерь на вихревые токи в постоянных магнитах и подбора соотношения количества зубцов статора и полюсов ротора, обеспечение жесткой внешней характеристики и минимального гармонического состава, благодаря минимизации индуктивных сопротивлений по продольной и поперечным осям.

Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений магнитоэлектрического генератора, повышение КПД на 1-2%, защита постоянных магнитов ротора от теплового размагничивания.

Поставленная задача решается и указанный результат достигается тем, что магнитоэлектрический генератор, имеющий шесть фаз и содержащий корпус, в который запрессован сердечник магнитопровода статора, выполненного из изолированных листов электротехнической стали, катушку установленную в пазы сердечника статора, ротор, состоящий из немагнитной втулки, вала и постоянных магнитов на внешней части немагнитной втулки, согласно изобретению, имеет двадцать четыре паза статора и четырнадцать полюсов, при этом катушка, установленная в пазы сердечника статора, имеет зубцовый концентрический тип с минимальными лобовыми вылетами, при этом в каждый паз сердечника статора, вмонтирован ферромагнитный клин, постоянные магниты ротора зашихтованны в аксиальном направлении и имеют "трапециедальную" форму, на внешнюю часть ротора установлен немагнитопроводящий бандаж.

Магнитоэлектрический генератор имеет двадцать четыре паза статора и четырнадцать полюсов, данное соотношение обеспечивает высокие энергетические показатели магнитоэлектрического генератора, при этом катушка, установленная в пазы сердечника статора имеет зубцовый, концентрический тип, с минимальными лобовыми вылетами, в каждый паз сердечника статора, вмонтирован ферромагнитный клин, для минимизации значений вихревых токов на постоянные магниты ротора, причем клин подбирается определенной толщины таким образом, чтобы значения плотности тока в фазах не превышали допустимых показателей обмоточного провода, постоянные магниты ротора зашихтованны в аксиальном направлении для минимизации потерь на вихревые токи, и имеют "трапециедальную" форму, для минимизации индуктивных сопротивлений по продольной и поперечной осям и минимизации высших гармоник, на внешнюю часть ротора установлен немагнитопроводящий бандаж, для обеспечения механической прочности и надежности.

Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный разрез рассматриваемого магнитоэлектрического генератора с зубцовой, концентрической обмоткой. На фиг. 2 и фиг. 3 изображен продольный разрез активной части магнитноэлектрического генератора с зубцовой, концентрической обмоткой и распределенной обмоткой соответственно, откуда видно, что лобовый вылет магнитоэлектрического генератора с зубцовой, концентрической обмоткой меньше лобового вылета магнитоэлектрического генератора с распределенной обмоткой. На фиг. 4 изображена схема зубцовой, концентрической обмотки, цифрами на фиг. 4 показана нумерация пазов. На фиг. 5 и фиг. 6 показаны потери на вихревые токи в постоянных магнитах без ферромагнитного клина и с ферромагнитным клином в пазах сердечника статора соответственно. На фиг. 7, фиг. 8, фиг. 9, фиг. 10 представлены осциллограммы выпрямленного напряжения магнитоэлектрического генератора с различным количеством полюсов ротора: 26 полюсов, 22 полюса, 14 полюсов, 10 полюсов соответственно.

Предложенный магнитоэлектрический генератор содержит (фиг. 1, фиг. 2) корпус 1 (на фиг. 2 не показан, т.к. на фиг. 2 изображен продольный разрез активной части), в который запрессован сердечник статора 2, выполненного из изолированных листов электротехнической стали, катушки 3, вмонтированные в пазы сердечника статора 2, которые образуют шестифазную зубцовую, концентрическую обмотку магнитоэлектрического генератора. В паз сердечника статора 2 вмонтированы ферромагнитные клинья 4 и пазовая изоляция 5. Ротор 6, магнитоэлектрического генератора состоит из вала 7, на который насажена втулка 8 со сквозными отверстиями. На внешнюю часть немагнитной втулки 8 установлены четырнадцать полюсов 9 "трапециедальной" формы, каждый полюс состоит из зашихтованых и электрически изолированных друг от друга постоянных магнитов 10 (фиг. 5), соединенных вместе в аксиальном направлении. С двух торцов немагнитной втулки 8 установлены немагнитные крышки 11 (фиг. 2), соединенные посредством винтов 12, для обеспечения механической прочности постоянных магнитов и ротора в целом. На внешнюю часть полюсов 9 установлен немагнитный бандаж 13, например из углепластиковой нити, для обеспечения механической прочности. На фиг. 3 изображен продольный разрез активной части магнитноэлектрического генератора с распределенной обмоткой, который содержит сердечник статора 14, выполненного из изолированных листов электротехнической стали, катушки 15, вмонтированные в пазы сердечника статора 14, которые образуют шестифазную распределенную обмотку магнитоэлектрического генератора. В паз сердечника статора 14 вмонтированы ферромагнитные клинья 16 и пазовая изоляция 17. Ротор 18, магнитоэлектрического генератора с распределенной обмоткой состоит из вала 19, на который насажена втулка 20 со сквозными отверстиями. На внешнюю часть немагнитной втулки 20 установлены четырнадцать полюсов 21 "трапециедальной" формы, каждый полюс состоит из зашихтованных и электрически изолированных друг от друга постоянных магнитов 22, соединенных вместе в аксиальном направлении. С двух торцов немагнитной втулки 20 установлены немагнитные крышки 23, соединенные посредством винтов 24, для обеспечения механической прочности постоянных магнитов 22 и ротора 18 в целом. На внешнюю часть полюсов 21 установлен немагнитный бандаж 13, например из углепластиковой нити, для обеспечения механической прочности.

Предложенный магнитоэлектрический генератор работает следующим образом (фиг. 1, фиг. 2): при вращении ротора 6, по сердечнику статора протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в катушке 3 наводится электродвижущая сила, величина которой зависит от числа витков катушки 3, частоты вращения ротора 6 и магнитного потока возбуждения. При подключении нагрузки в катушках 3 начинает протекать ток, при этом создаются тепловые потери в катушках 3, в сердечнике статора 2, механические потери в подшипниковых узлах и самое главное создаются потери на вихревые токи в полюсах 9, собранных из постоянных магнитов 10. Для минимизации потерь на вихревые токи в полюсах 9, постоянные магниты 10 выполнены зашихтованными и электрически изолированы друг от друга аксиальном направлении. Чем меньше толщина постоянных магнитов 10 тем меньше контур замыкания вихревого тока в теле постоянных магнитов 10. Чтобы минимизировать потери на вихревые токи в бандаже 13 и увеличить механическую прочность, бандаж выполняют из высокопрочного немагнитного материала, например из высокопрочной, углепластиковой нити. Полюса 9, состоящие из постоянных магнитов 10, в поперечном разрезе имеют сложную "трапециедальную" форму, с целью минимизации индуктивных сопротивлений по продольной, поперечной осям и минимизации высших гармоник. Магнитоэлектрический генератор с данной геометрией полюсов 9 будет иметь жесткую механическую характеристику. Также с целью минимизации потерь на вихревые токи в постоянных магнитах 10 и защиты их от теплового размагничивания в пазы сердечника статора вмонтированы ферромагнитные клинья 4, причем ферромагнитный клин выполнен из ферромагнитного материла, который имеет невысокую магнитную индукцию насыщения и при насыщении имеет незначительные тепловые потери, к примеру данным требованиям отвечает Magnoval 2067. Такой ферромагнитный клин 4 выступает в качестве магнитного "клапана", вследствие чего потери энергии на вихревые токи в постоянных магнитах 10 снижаются (фиг. 5, фиг. 6). Причем ферромагнитный клин 4 подбирается определенной толщины таким образом, чтобы значения плотности тока в фазах не превышали допустимых показателей обмоточного провода. Магнитный поток, проходящий через втулку 8, имеет постоянных характер, исходящий от постоянных магнитов 10, помимо этого магнитное поле, замыкающееся через тело втулки 8 не участвует при преобразовании энергии магнитоэлектрического генератора, поэтому втулка 8 выполнена из немагнитного материала. На втулке 8 имеются сквозные отверстия для минимизации массы магнитоэлектрического генератора. Кроме того, магнитоэлектрический генератор выполнен шестифазным с зубцовой, концентрической обмоткой (фиг. 4, цифрами на фиг. 4 показана нумерация пазов) для минимизации габаритных размеров и для повышения надежности магнитоэлектрического генератора, т.е. если вследствие аварии происходит обрыв фазы, то магнитоэлектрический генератор не выходит из строя и может проработать определенное время на 5 фазах. Так как сердечник статора имеет шесть фаз, двадцать четыре паза, а ротор имеет четырнадцать полюсов, данная конфигурация является наиболее энергоэффективной. Н а фиг. 3 изображен продольный разрез активной части магнитноэлектрического генератора с распределенной обмоткой, откуда видно, что лобовый вылет магнитоэлектрического генератора с распределенной обмоткой значительно больше лобового вылета магнитоэлектрического генератора с зубцовой, концентрической обмоткой (фиг. 2). На фиг. 7, фиг. 8, фиг. 9, фиг. 10 представлены осциллограммы выпрямленных напряжений магнитоэлектрического генератора с различным значением полюсов ротора, при этом геометрия сердечника статора и шестифазная обмотка были одинаковы во всех случаях.

Итак, заявленный магнитоэлектрический генератор позволит расширить функциональные возможности, повысить выходную мощность при неизменных массогабаритных показателях, минимизировать потери на вихревые токи в постоянных магнитах, повысить КПД на 1-2%, а применение полюсов "трапециедальной" формы позволит сделать выходную характеристику магнитоэлектрического генератора жесткой.

Магнитоэлектрический генератор, имеющий шесть фаз и содержащий корпус, в который запрессован сердечник магнитопровода статора, выполненный из изолированных листов электротехнической стали, катушку, установленную в пазы сердечника статора, ротор, состоящий из немагнитной втулки, вала и постоянных магнитов на внешней части немагнитной втулки, отличающийся тем, что имеет двадцать четыре паза сердечника статора и четырнадцать полюсов, а катушка, установленная в пазы сердечника статора, имеет зубцовый, концентрический тип с минимальными лобовыми вылетами, при этом в каждый паз сердечника статора вмонтирован ферромагнитный клин, постоянные магниты ротора зашихтованы в аксиальном направлении и имеют "трапециедальную" форму, на внешнюю часть ротора установлен немагнитопроводящий бандаж.
Магнитоэлектрический генератор
Магнитоэлектрический генератор
Магнитоэлектрический генератор
Магнитоэлектрический генератор
Магнитоэлектрический генератор
Магнитоэлектрический генератор
Магнитоэлектрический генератор
Магнитоэлектрический генератор
Источник поступления информации: Роспатент

Показаны записи 91-100 из 109.
01.09.2019
№219.017.c5dc

Способ вихретокового контроля целостности бандажных оболочек роторов

Изобретение относится к области электромашиностроения и может быть использовано в электрических машинах при диагностировании состояния бандажных оболочек роторов. Способ вихретокового контроля дополнительно содержит этапы, на которых осуществляют контроль бандажной оболочки ротора электрической...
Тип: Изобретение
Номер охранного документа: 0002698557
Дата охранного документа: 28.08.2019
02.10.2019
№219.017.cdaf

Электродвигатель с беспазовым магнитопроводом статора из аморфного железа

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение кпд, энергоэффективности и минимизация тепловыделений. Беспазовый магнитопровод статора выполнен в виде полого...
Тип: Изобретение
Номер охранного документа: 0002700656
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cef2

Магнитная система синхронного двигателя с инкорпорированными постоянными магнитами и с асинхронным пуском.

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение энергетических характеристик: полезной мощности, механического момента, коэффициента мощности, кпд при снижении массогабаритных...
Тип: Изобретение
Номер охранного документа: 0002700663
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cf27

Высокооборотный электромеханический преобразователь энергии с воздушным охлаждением (варианты)

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности и эффективности отвода выделяемого тепла электромеханических преобразователей энергии, повышении КПД за счет предохранения постоянных магнитов ротора от теплового размагничивания. По внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002700280
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d157

Электрическая машина с интенсивной системой охлаждения

Изобретение относится к области электромашиностроения и может быть использовано при изготовлении электродвигателей и генераторов. Технический результат - повышение надежности электрических машин благодаря защите от межвиткового короткого замыкания, а также повышение эффективности охлаждения...
Тип: Изобретение
Номер охранного документа: 0002700274
Дата охранного документа: 16.09.2019
01.11.2019
№219.017.dc88

Способ диагностики двухполюсного ротора с постоянными магнитами

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах. Технический результат: повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами....
Тип: Изобретение
Номер охранного документа: 0002704567
Дата охранного документа: 29.10.2019
19.11.2019
№219.017.e3b8

Магнитоэлектродегидратор

Изобретение относится к аппаратам для обезвоживания и обессоливания нефти и очистки нефтепродуктов и может быть использовано в нефтяной и нефтеперерабатывающей промышленности. Магнитоэлектродегидратор содержит корпус, источник питания, электроды. Содержит герметично закрепленную с нижней...
Тип: Изобретение
Номер охранного документа: 0002706316
Дата охранного документа: 15.11.2019
24.11.2019
№219.017.e60c

Статор электрической машины с жидкостным охлаждением (варианты)

Изобретение относится к области электромашиностроения, в частности к высокооборотным электрическим машинам. Технический результат - повышение эффективности охлаждения и снижение тепловой заметности электрических машин. Беспазовый статор электрической машины с жидкостным охлаждением содержит...
Тип: Изобретение
Номер охранного документа: 0002706802
Дата охранного документа: 21.11.2019
14.12.2019
№219.017.edf5

Устройство стабилизации напряжения магнитоэлектрического генератора

Изобретение относится к электротехнике. Технический результат заключается в возможности стабилизации напряжения двухполюсного магнитоэлектрического генератора при одновременном повышении его эффективности и минимизации массогабаритных показателей. Устройство стабилизации напряжения...
Тип: Изобретение
Номер охранного документа: 0002708881
Дата охранного документа: 12.12.2019
18.12.2019
№219.017.ee6d

Электромеханический преобразователь энергии с зубцовой концентрической обмоткой

Изобретение относится к области электромашиностроения и может быть использовано в автономных системах электроснабжения, а также в авиационной отрасли в качестве стартер-генератора. Технический результат - минимизация колебаний частоты вращения и электромагнитного момента при номинальном режиме...
Тип: Изобретение
Номер охранного документа: 0002709024
Дата охранного документа: 13.12.2019
+ добавить свой РИД