×
22.08.2019
219.017.c213

Результат интеллектуальной деятельности: Способ сжатия телеметрических кадров данных

Вид РИД

Изобретение

Аннотация: Изобретение относится к области кодирования и декодирования без потерь с сокращением избыточности передаваемой информации и может использоваться для сжатия и восстановления телеметрических кадров данных в информационно-измерительных системах. Технический результат - повышение скорости сжатия. Данный способ заключается в отображении исходных кадров, представленных в битовом виде на поверхность тора с последующим поиском на ней прямоугольных областей и фиксацией такого числа двух пар координат, которое позволит описать все сжимаемые области, размер которых больше количества бит, отводимого на хранение координат, и фиксирующих положение левого верхнего и правого нижнего углов каждой из выделенных областей согласно изобретению, битовое представление кадра данных отображается на прямоугольник, поверхность которого затем разбивается на множество полностью покрывающих ее прямоугольных областей произвольного размера, которые могут состоять из бит только одного типа, с последующей фиксацией для каждой области глубины рекурсивного разбиения поверхности прямоугольника, проведенного для получения области, что позволяет сжимать области, которые содержат в себе число бит, больше количества бит, отводимого на хранение кода, описывающего глубину рекурсивного разбиения, проведенного для получения каждой зафиксированной области, а также бита их типа. 3 ил., 2 табл.

Изобретение относится к области кодирования и декодирования без потерь с сокращением избыточности передаваемой информации и может использоваться для сжатия и восстановления телеметрических кадров данных в информационно-измерительных системах.

Известен способ сжатия телеметрических кадров данных, в основе которого лежит отображение кадров, представленных в битовом виде, на поверхность тора с последующим поиском прямоугольных областей, которые могут включать либо биты только одного типа, либо двух типов одновременно. После обнаружения, каждую из найденных областей предлагается кодировать двумя парами координат Р1,k1,k, у1,k] и P2,k[x2,k, у2,k], которые задают положение левого верхнего и правого нижнего углов k-ой области соответственно (Богачев И.В., Левенец А.В., Чье Ен Ун. Геометрический подход к сжатию данных телеметрических систем // Информатика и системы управления, 2015. - №4(46). - С. 16-22).

Недостатком данного способа является то, что он не позволяет сжимать области, размер которых меньше количества бит, отводимого на хранение двух пар координат области, так же невысок показатель скорости работы способа, не всегда оптимально число пар координат, отводимых на фиксацию областей и в некоторых случаях присутствует необходимость отдельной фиксации единичных бит.

Наиболее близким аналогом заявляемого изобретения является способ сжатия двоичных данных в виде структурированных информационных блоков заключающийся в том, что для входного потока данных, который содержит символы, представленные битовыми последовательностями фиксированного размера, производят подсчет частоты повторяемости символов. Затем для обозначения часто и редко встречающихся символов производят выработку, соответственно, более короткой и более длинной битовых последовательностей, которые объединяют в совокупную битовую последовательность. Такая последовательность отличается тем, что из нее исключены битовые последовательности, соответствующие повторяющимся символам входного потока двоичных данных (патент РФ №2497277 Н03М 7/30 (2006.01) от 29.07.2010).

Недостатком данного способа является его ориентация исключительно на одномерное представление потока данных.

Технической задачей, на решение которой направлено заявленное изобретение, является повышение скорости сжатия телеметрических кадров данных.

Поставленная задача достигается тем, что в способе сжатия телеметрических кадров данных, заключающемся в отображении исходных кадров, представленных в битовом виде на поверхность тора с последующим поиском на ней прямоугольных областей и фиксацией такого числа двух пар координат, которое позволит описать все сжимаемые области, размер которых больше количества бит, отводимого на хранение координат, и фиксирующих положение левого верхнего и правого нижнего углов каждой из выделенных областей согласно изобретению, битовое представление кадра данных отображается на прямоугольник, поверхность которого затем разбивается на множество полностью покрывающих ее прямоугольных областей произвольного размера, которые могут состоять из бит только одного типа, с последующей фиксацией для каждой области глубины рекурсивного разбиения поверхности прямоугольника, проведенного для получения области, что позволяет сжимать области, которые содержат в себе число бит, больше количества бит, отводимого на хранение кода, описывающего глубину рекурсивного разбиения, проведенного для получения каждой зафиксированной области, а также бита их типа.

Принцип действия изобретения поясняется чертежом, где на фиг. 1 приведено концептуальное изображение для объяснения работы предложенного способа сжатия, при этом приняты следующие обозначения: di - результат дельта-кодирования одного отсчета в двух соседних кадрах, полученный от источника данных (датчика Дi), n - число источников данных разрядности m, Δbi - представление отсчета Δdi в виде последовательности бит, Р2,k - точка, фиксирующая положение на плоскости одной пары координат правого нижнего угла k-ой выделенной области.

Способ работает следующим образом. Телеметрический кадр данных, содержащий отсчеты n датчиков с разрядностью m, представляется в виде разностного кадра, как вектор-столбец Δd размерностью n:

Δd=(Δd1, Ad2, …, Δdi, …, Δdn)T.

Каждый элемент вектор-столбца Δdi представляется в виде битовой последовательности и записывается в виде вектор-строки Δb размерности m:

Δdi=Δbi=(bi,1, bi,2, …, bi,j, …, bi,m).

В конечном счете, вектор-столбец Δd представляется в виде разностной битовой матрицы ΔВ, размерностью n х m:

ΔВ=(Δbi, Δb2,, Δbi, …, Δbn)Т.

Далее предлагается отобразить телеметрический кадр данных, представленный матрицей ΔВ на прямоугольник, поверхность которого затем разбивается на прямоугольные однородные области, состоящие либо только из нулевых, либо только из единичных бит.

После разбиения, полученные области предлагается кодировать при помощи глубины рекурсивного разбиения, проведенного для их получения и состоянием их левого верхнего бита, кодирующим тип области (нулевая либо единичная). При этом код представляет собой битовую последовательность следующего вида:

где - глубина рекурсивного разбиения необходимая для получения j-ой выделенной области.

Такой подход позволяет сжимать области, которые содержат в себе число бит, больше количества бит, отводимого на хранение кода, описывающего глубину рекурсивного разбиения, проведенного для получения каждой зафиксированной области, а также бита их типа.

На фиг. 2 показан пример разбиения отображенного на прямоугольник кадра телеметрических данных с глубинами рекурсии требуемыми для получения каждой j-ой из всех областей равными единице и приняты следующие обозначения: 1-4 - номера областей, получившихся в результате разбиения; h1 - число столбцов 1-ой и 3-ей областей; h2 - число столбцов 2-ой и 4-ой областей; w1 - число строк 1-ой и 2-ой областей; w2 - число строк 3-ей и 4-ой областей; х, у - пара координат точки описывающей верхний левый угол области, для которой происходит разбиение; h - число строк области, для которой проводилось разбиение; w - число столбцов области для которой проводилось разбиение.

Важно заметить, что разбиение происходит строго по часовой стрелке начиная с левого верхнего угла.

Непосредственно процедуру разбиения кадра можно описать как последовательность, состоящую из следующих шагов:

1. Переменные h, w, х, у и определяются следующим образом: h=n; w=m; х=0; у=0 и Создается буфер кодов (БК) в который предлагается помещать коды, описывающие однородные области;

2. Область с параметрами h, w, х и у проверяется на однородность. Если область однородна, то принимает значение и текущая ветвь рекурсии прерывается, а в БК заносится код, описывающий полученную однородную область, в противном случае происходит переход к шагу 3;

3. Переменные h1, h2 и w1, w2 соответственно определяются согласно следующим формулам:

4. Если значение переменных h и w строго больше единицы, то разбиение выполняется последовательно для четырех областей, параметрам которых присваиваются следующие значения:

а. х=х; у=у; h=h1; w=w1 и После чего происходит переход к шагу 2;

б. х=х+w1; у=у; h=h1, и w=w2 и После чего происходит переход к шагу 2;

в. х=х; у=у+h1, h=h2, и w=w1 и После чего происходит переход к шагу 2;

г. x=x+w1; y=y+h1; h=h2; и w=w2 и После чего происходит переход к шагу 2.

5. Если значение переменной h строго больше единицы, a w=1, то разбиение выполняется последовательно для двух областей, параметрам которых присваиваются следующие значения:

а. х=х; у=у; h=h1; w=w и После чего происходит переход к шагу 2;

б. х=х; у=у+h1; h=h2, w=w и После чего происходит переход к шагу 2.

6. Если значение переменной w строго больше единицы, a h=1, то разбиение выполняется последовательно для двух областей, параметрам которых присваиваются следующие значения:

а. х=х; у=у; h=h; w=w1 и После чего происходит переход к шагу 2;

б. х=х+w1, у=у; h=h1; w=w2 и После чего происходит переход к шагу 2.

7. Если в БК помещены коды, описывающие все возможные однородные области, то выполнение рекурсивного разбиения кадра завершается.

Таким образом для примера, представленного на фиг. 2 будут получены следующие четыре кода: 1. 101; 2. 100; 3. 100; 4. 100.

Для фиксации результатов работы алгоритма предлагается использовать следующий формат, представленный на фиг.3. В общем случае заголовок такого формата состоит из пяти бит флагов Fэ.сж, Fconst, Fcm, F2 и Fn, после которых идет поле описания кодов полученных областей С.

Важно отметить, что при формировании формата могут возникнуть следующие ситуации:

- кадр данных не поддается сжатию. В этом случае заголовок состоит из одного бита флага Fэ.сж и бит несжатого кадра;

- кадр поддается сжатию и при этом значения всех отсчетов не изменились (такой кадр предлагается называть нулевым). В этом случае заголовок состоит из двух бит флагов Fэ.сж и Fconst;

- кадр данных стационарный, поддается сжатию и при этом значения хотя бы некоторых отсчетов изменились. В этом случае заголовок состоит из пяти бит флагов Fэ.сж, Fconst, Fcm, F2 и Fn, после которых идет поле описания С.

Флаги имеют следующий смысл: флаг Fcm фиксирует стационарность отсчетов кадра (устанавливается, если кадр содержит только стационарные отсчеты); флаг Fconst фиксирует неизменность значений отсчетов кадра (устанавливается если результат дельта-кодирования над всеми отсчетами кадра равен нулю); флаг Fn фиксирует наличие отрицательных отсчетов (устанавливается если результат дельта-кодирования хотя бы одного отсчета является отрицательным); флаг F2 фиксирует использование второго разряда во всех отсчетах (устанавливается если второй разряд хотя бы одного отсчета содержит единичный бит).

Процедура декодирования основывается на состоянии управляющих флагов, в связи с этим при декодировании необходимо учесть следующие ситуации:

- кадр данных не поддается сжатию. В этом случае биты данных разбиваются на n m-разрядных отсчета, после чего декодированный кадр данных формируется как сумма соответствующих отсчетов, полученных на текущем и предыдущем шагах;

- кадр данных поддается сжатию и при этом значения всех отсчетов не изменились (нулевой кадр данных). В этом случае декодированный кадр данных формируется из соответствующих отсчетов, полученных на предыдущем шаге;

- кадр данных стационарный, поддается сжатию и при этом значения хотя бы некоторых отсчетов изменились. В этом случае процесс декодирования основывается на значениях, хранящихся в поле описания, при этом выполняется следующая последовательность шагов:

1. Переменные h, w, х и у определяются следующим образом: h=n; w=m; х=0 и у=0;

2. вчитывается код описания первой полученной области;

3. Считывается первый бит кода описания текущей области;

4. Если считаный бит является нулевым, то считывается следующий за ним бит, который определяет тип восстанавливаемой области, после чего происходит ее восстановление с параметрами h, w, x, y и происходит переход к шагу 9, в противном случае происходит переход к шагу 5;

5. Переменные h1, h2 и w1, w2 определяются согласно формулам (1) и (2) соответственно. Если значение переменных h и w строго больше единицы, то восстановление выполняется для одной из четырех областей, параметрам которых присваиваются следующие значения:

а. Если область с параметрами х, у, h1 и w1 не была восстановлена, то параметрам h и w присваиваются значения h=h1 и w=w1, после чего происходит переход к шагу 9;

б. Если область с параметрами х+w1, у, h1 и w2 не была восстановлена, то параметрам h, w и х присваиваются значения h=h1, w=w2 и х=х+w1, после чего происходит переход к шагу 9;

в. Если область с параметрами х, у+h1, h2 и w1 не была восстановлена, то параметрам h, w и y присваиваются значения h=h2, w=w1 и у=у+h1, после чего происходит переход к шагу 9;

г. Если область с параметрами х+w1, у+h1, h2 и w2 не была восстановлена, то параметрам h, w, х и у присваиваются значения h=h2, w=w2, х=х+w1 и у=у+h1, после чего происходит переход к шагу 9.

6. Если значение переменной h строго больше единицы, a w=1, то восстановление выполняется для одной из двух областей, параметрам которых присваиваются следующие значения:

а. Если область с параметрами х, у, h1 и w не была восстановлена, то параметру h присваивается значения h=h1, после чего происходит переход к шагу 9;

б. Если область с параметрами x, у+h1, h2 и w не была восстановлена, то параметрам h и у присваиваются значения h=h2 и y=y+h1, после чего происходит переход к шагу 9.

7. Если значение переменной w строго больше единицы, a h=1, то восстановление выполняется для одной из двух областей, параметрам которых присваиваются следующие значения:

а. Если область с параметрами х, у, h и w1 не была восстановлена, то параметру w присваивается значения w=w1, после чего происходит переход к шагу 9;

б. Если область с параметрами х+w1, у, h и w2 не была восстановлена, то параметрам w и x присваиваются значения w=w2 и x=x+w1, после чего происходит переход к шагу 9.

8. Считывается следующий бит кода описания текущей области и происходит переход к шагу 5;

9. Если считаны все коды, то восстановление кадра данных завершается, в противном случае считывается код описания следующей области, после чего происходит переход к шагу 3.

Важно отметить, что код, описывающий полученные области, не содержит никакой информации о координатах самой области и лишь указывает на глубину рекурсивного разбиения, проведенного для ее получения и тип бит, которые в ней содержатся, в связи с чем для предложенного алгоритма процедура восстановления является симметричной.

Предложенный способ сжатия тестировался с помощью нескольких наборов телеметрических кадров данных (НКД), полученных от разных технических объектов. Для исследования использовались данные, как со стационарными свойствами, так и данные нестационарного характера.

Кадр данных представлял собой набор однобайтных отсчетов датчиков, причем для разных наборов данных кадры включали в себя разное число датчиков (от 32-х до 56-и). Все наборы отличаются друг от друга числом кадров данных. Так, набор НКД1 содержит 17 тыс.кадров данных, НКД2 - 11 тыс.кадров данных, а НКД3 - 19,5 тыс.кадров данных, а НКД4 - 19 тыс.кадров данных и НКД5 - 19 тыс.кадров данных.

В таблице 1 приведен средний коэффициент сжатия (СКС) наборов кадров данных, а в таблице 2 - среднее время сжатия (СВС), необходимое для сжатия одного кадра данных.

Таким образом, данный способ позволяет повысить скорость сжатия, за счет того, что: вместо поиска областей, которые могут включать либо биты только одного типа, либо двух типов одновременно происходит полное разбиение кадра данных на области, которые могут состоять из бит только одного типа; битовое представление кадра данных отображается на прямоугольник; фиксируется только глубина рекурсивного разбиения, проведенного для получения области, а также бит ее типа.

Способ сжатия телеметрических кадров данных, заключающийся в отображении исходных кадров, представленных в битовом виде на поверхность тора с последующим поиском на ней прямоугольных областей и фиксацией такого числа двух пар координат, которое позволит описать все сжимаемые области, размер которых больше количества бит, отводимого на хранение координат, и фиксирующих положение левого верхнего и правого нижнего углов каждой из выделенных областей, отличающийся тем, что битовое представление кадра данных отображается на прямоугольник, поверхность которого затем разбивается на множество полностью покрывающих ее прямоугольных областей произвольного размера, которые могут состоять из бит только одного типа, с последующей фиксацией для каждой области глубины рекурсивного разбиения поверхности прямоугольника, проведенного для получения области, что позволяет сжимать области, которые содержат в себе число бит, больше количества бит, отводимого на хранение кода, описывающего глубину рекурсивного разбиения, проведенного для получения каждой зафиксированной области, а также бита их типа.
Источник поступления информации: Роспатент

Показаны записи 101-110 из 115.
30.05.2020
№220.018.2250

Способ разработки горных пород и грунтов бульдозером параллельными траншеями

Изобретение относится к области вскрышных работ и может быть использовано в различных отраслях строительства. Техническим результатом является снижение энергоемкости разработки горных пород и грунта за счет снижения потерь в боковые валики и сил сопротивления набора призмы, а также повышения...
Тип: Изобретение
Номер охранного документа: 0002722189
Дата охранного документа: 28.05.2020
30.05.2020
№220.018.2264

Устройство для контроля эффективности процесса уплотнения асфальтобетонной смеси дорожным катком

Изобретение относится к дорожному строительству, а именно к устройствам для оперативной оценки эффективности процесса уплотнения асфальтобетонной смеси гладковальцовым дорожным катком. Техническая задача - повышение точности контроля эффективности процесса уплотнения асфальтобетонной смеси...
Тип: Изобретение
Номер охранного документа: 0002722186
Дата охранного документа: 28.05.2020
03.06.2020
№220.018.235c

Способ токарной обработки термопластичных полимерных материалов

Изобретение относится к обработке материалов резанием и может быть использовано при механической обработке заготовок из пластмасс, преимущественно из термопластичных полимерных материалов. Технической задачей, на решение которой направлено изобретение, является повышение физико-механических...
Тип: Изобретение
Номер охранного документа: 0002722543
Дата охранного документа: 01.06.2020
05.06.2020
№220.018.2484

Способ обработки шпона

Изобретение относится к деревообрабатывающей промышленности, в частности к обработке шпона. Выполняют механическое удаление избытка воды из шпона вальцами и введение в него раствора водорастворимых искусственных смол. Перед удалением воды лист шпона нагревают токами высокой частоты. После...
Тип: Изобретение
Номер охранного документа: 0002722757
Дата охранного документа: 03.06.2020
17.06.2020
№220.018.2727

Стрела грузоподъёмной машины

Изобретение относится к грузоподъемным машинам, в частности к телескопическим стрелам самоходных грузоподъемных кранов. Стрела грузоподъемной машины включает корневую невыдвижную, среднюю и концевую выдвижные секции. В стреле расположено два блока приводных гидроцилиндров, состоящих каждый из...
Тип: Изобретение
Номер охранного документа: 0002723523
Дата охранного документа: 11.06.2020
17.06.2020
№220.018.2749

Способ определения размеров зоны предразрушения в массиве горных пород

Изобретение относится к области буровзрывных работ в крепких горных породах и может быть использовано в различных отраслях, применяющих взрывные работы в скальных массивах горных пород. Способ определения размеров зоны предразрушения в массиве горных пород включает проведение взрывов на опытных...
Тип: Изобретение
Номер охранного документа: 0002723418
Дата охранного документа: 11.06.2020
17.06.2020
№220.018.2763

Способ отработки локальных участков оруденения в крепких горных породах

Изобретение относится к области взрывного разрушения горных пород с использованием многорядного короткозамедленного взрывания и может быть использовано на карьерах по отработке ценных руд, применяющих взрывные работы в крепких горных породах. Способ отработки локальных участков оруденения в...
Тип: Изобретение
Номер охранного документа: 0002723419
Дата охранного документа: 11.06.2020
31.07.2020
№220.018.3a38

Способ транспортировки леса

Транспортировку лесоматериалов производят по системе желобов, установленных и закрепленных по естественной траектории притока реки. Необходимый объем воды накапливается в небольшом водохранилище путем разворачивания временной мини-плотины, представленной в виде мягкой водоналивной дамбы,...
Тип: Изобретение
Номер охранного документа: 0002728368
Дата охранного документа: 29.07.2020
15.05.2023
№223.018.5aa3

Способ управления транспортными потоками

Изобретение относится к управлению движением транспортными потоками и может быть использовано в транспортных системах городов. Технический результат - повышение эффективности управления транспортными потоками в городах. Способ управления транспортными потоками города включает создание эстакад...
Тип: Изобретение
Номер охранного документа: 0002769689
Дата охранного документа: 05.04.2022
16.05.2023
№223.018.6168

Способ циклично-поточной отработки скальных горных пород

Изобретение относится к области разработки полезных ископаемых с применением взрывного рыхления скальных горных пород и может быть использовано в различных отраслях, применяющих взрывные работы в скальных массивах горных пород. Способ циклично-поточной отработки скальных горных пород включает...
Тип: Изобретение
Номер охранного документа: 0002741649
Дата охранного документа: 28.01.2021
Показаны записи 1-3 из 3.
25.08.2017
№217.015.a6a5

Защитная композиция для деревянных строительных конструкций

Изобретение относится к области строительства, для антикоррозийной и гидроизоляционной защиты деревянных строительных конструкций, в частности складов минеральных удобрений. Защитная композиция для деревянных строительных конструкций включает полимерное связующее и наполнитель, при этом в...
Тип: Изобретение
Номер охранного документа: 0002608090
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.af1a

Автоматизированная система контроля качества нефти

Изобретение относится к средствам автоматизации процессов транспортирования «партий нефти» различного качества по одному трубопроводу с контролем в смеси нефти показателей ее качества. Отличительная особенность автоматизированной системы контроля качества нефти изобретения заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002610902
Дата охранного документа: 17.02.2017
15.05.2020
№220.018.1cd6

Способ помехозащищенной передачи телеметрических данных с адаптацией к состоянию канала связи

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении достоверности передачи данных. Способ передачи цифровой информации с адаптивным выбором параметров помехозащищенного кода, в основе которого лежит принцип, заключающийся в том, что если...
Тип: Изобретение
Номер охранного документа: 0002720901
Дата охранного документа: 14.05.2020
+ добавить свой РИД