×
21.08.2019
219.017.c1cb

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ЖАРОСТОЙКИХ ПОКРЫТИЙ Y-МО-О ИЗ ПЛАЗМЫ ВАКУУМНО-ДУГОВОГО РАЗРЯДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу нанесения жаростойких покрытий из плазмы вакуумно-дугового разряда и может быть использовано для повышения надежности и долговечности широкого ряда деталей машин и инструмента. Технический результат изобретения заключается в улучшении стойкости деталей к газовой коррозииии за счет получения равномерных сплошных покрытий требуемого стехиометрического состава (YMoO, YMoO и YMoO). Покрытие наносят из двух однокомпонентных катодов Мо и Y на подложку из композитного материала с молибденовой матрицей, армированной волокном на основе оксидов AlO и двойных оксидов Y и Al, при подаче химически чистого кислорода в качестве реакционного газа. Покрытие получают при температурах, не превышающих 500°С, при которых подложка из композита на молибденовой основе не будет разрушаться при высоких температурах эксплуатации порядка 1300-1500°С. Кроме того, образцы с покрытиями, наносящимися в течение 65 минут, подвергают отжигу при температуре 950°С в течение 1 часа в воздушной атмосфере для кристаллизации молибдатов иттрия в покрытиях и стабилизации его структуры соответственно. 1 з.п. ф-лы, 2 ил., 1пр., 1 табл.

Изобретение относится к области нанесения жаростойких покрытий из плазмы вакуумно-дугового разряда, в частности к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий, и может быть использовано для повышения надежности и долговечности широкого ряда деталей машин и инструмента.

Известен способ получения Mo-N покрытий, получаемых методом вакуумно-дугового осаждения (В.М. Шулаев, А.А. Андреев «ВЫСОКОТВЕРДЫЕ НАНОСТРУКТУРНЫЕ Mo-N ПОКРЫТИЯ»). Технологический процесс нанесения нитридного покрытия включает две основные операции: очистку подложки, осуществляемую за счет бомбардировки поверхности в течение 1-2 минут ионами молибдена, и конденсацию покрытия, которая проводилась на подложку из нержавеющей стали температурой 400-500°С со скоростью 20 мкм/ч и при давлении азота в реакционной камере от 10-3 до 1 Па. В процессе конденсации происходит образование перенасыщенных твердых растворов внедрений азота в молибдене, монофазного нитрида молибдена, а также смеси этих фаз.

Недостатком данного способа является улучшение только одного параметра - твердости покрытия, а также невозможность изменения его значений, о чем свидетельствует эффект скачкообразного прироста твердости. Низкие значения теплостойкости (не более 1100°С) также является недостатком данного способа.

Известен способ нанесения покрытия на металлическую подложку, включающий контактирование по меньшей мере части металлической подложки с составом для предварительной обработки, содержащим источник металла IIIB группы и/или металла IVB группы и источник меди; и затем контактирование по меньшей мере части металлической подложки с составом, содержащим смолу, образующую пленку, и источник иттрия (патент РФ №2411090, B05D 7/16, опубликован 10.02.2011 г.).

Недостатком данного способа является дороговизна процесса получения покрытия.

Известен способ получения жаростойкого покрытия методом термодиффузионной обработки сплавов в порошковой смеси, содержащей мас. %: хром 30-40; алюминий 3-12; активатор 0.2-0.5; никель-иттрий 4-6 и оксид алюминия, остальное - до 100%. Термодиффузионную обработку осуществляют ступенчато в вакууме не менее 9 ч, после чего полученные образцы с нанесенным покрытием охлаждают, затем подвергают закалке при температуре 1180-1280°С не менее 1 ч и отпуску при температуре 900°С не менее 2 ч. (патент РФ №2184797, С23С 10/56, C21D 1/78, опубликован 10.07.2002 г.).

Недостатками данного способа являются трудоемкость и длительность процесса получения покрытия.

Известен способ получения многослойных жаростойких покрытий на изделиях из углерод-углеродных композиционных материалов методом ионно-плазменного напыления. Данное покрытие содержит слой ZrN, нанесенный на предварительно отожженный в вакууме при температуре 1200°С в течение 1,5 часов углерод-углеродный композиционный материал на прямоточном катоде при токе 90 А, напряжении 1,5 кВ в течение 1,5 часов толщиной 20-30 мкм, средний слой из Ni22Cr10AIY в виде полых гранул указанного состава методом плазменного напыления в защитной атмосфере в аргон-водородной плазме толщиной 50-70 мкм и внешний теплоизоляционный слой в виде порошка Al2O3-TiO2 в смеси LaB6 фракцией 50-70 мкм и 60-160 мкм для повышения теплостойкости. Слои покрытия по толщине относятся между собой как 1:2, 5:5, то есть слой на изделии составляет 20-30 мкм, средний слой - 50-70 мкм, а внешний слой - 100-150 мкм, и выбраны так, чтобы напряжения в системе покрытия углерод-углеродный композиционный материал были ниже предела прочности покрытия (патент РФ №2621506, С23С 30/00, С04В 35/84, С23С 14/06, опубликован 06.06.2017 г.).

Недостатками аналога являются длительность процесса нанесения покрытия, небольшое время эксплуатации при высоких температурах (2000°С), а также большая толщина самого покрытия (в среднем 210 мкм).

Наиболее близким техническим решением является способ упрочнения блока сопловых лопаток турбомашин из никелевых и кобальтовых сплавов, включающий формирование многослойного жаростойкого покрытия на внешних поверхностях верхней и нижней полок блока и пера лопатки, в котором первый слой толщиной от 10 до 70 мкм наносят вакуумным ионно-плазменным, или электронно-лучевым, или магнетронным методом, с последующим диффузионным отжигом при температуре 1000-1050°С в течение от 2 до 5 ч в вакууме от 10-3 до 10-4 мм рт.ст., причем в качестве материала используют сплав состава: Si - от 4,0 до 12,0%; Y - от 1,0 до 2,0%; Al - остальное, второй жаростойкий слой толщиной от 8 до 60 мкм наносят вакуумным ионно-плазменным, или электронно-лучевым, или магнетронным методом при температуре 930-960°С в течение от 2 до 5 ч, причем в качестве материала используют сплав состава Cr - от 18 до 30%, Al - от 5 до 13%, Y - от 0,2 до 0,65%, Ni - остальное, вновь подвергают отжигу в вакууме от 10-3 до 10-4 мм рт.ст., затем газотермическим методом наносят дополнительный подслой толщиной от 5 до 20 мкм состава Cr - от 18 до 30%, Al - от 5 до 13%, Y - от 0,2 до 0,65%; Ni - остальное (патент РФ №2445199, В23Р 6/00, С23С 14/06, опубликован 20.03.2012 г.).

Недостатком данного способа является возникновение термических напряжений, приводящих к разрушению керамического покрытия из-за того, что внешний слой и подложка имеют разные коэффициенты термического расширения.

Задачей изобретения является увеличение срока службы деталей из молибденовых сплавов за счет применения защитных покрытий на основе молибдатов иттрия.

Техническим результатом данного изобретения является улучшение стойкости деталей к газовой коррозии, возможность получения равномерных сплошных покрытий требуемого стехиометрического состава (Y2Mo3O12, Y2MoO6 и Y6MoO12), а также их нанесение при температурах, не превышающих 500°С, при которых подложка из композита на молибденовой основе, армированной оксидным волокном, не будет разрушаться при высоких температурах эксплуатации порядка 1300-1500°С.

Поставленная задача решается, а технический результат достигается тем, что в способе нанесения жаростойких покрытий, согласно изобретению, осаждение из плазмы вакуумно-дугового разряда могут проводить с двух однокомпонентных катодов Мо и Y на подложку из композитного материала с молибденовой матрицей, армированной волокном на основе оксидов Al2O3 и двойных оксидов Y и Al, при подаче химически чистого кислорода в качестве реакционного газа, при этом покрытия могут получать при температурах, не превышающих 500°С, при которых подложка из композита на молибденовой основе не будет разрушаться при высоких температурах эксплуатации порядка 1300-1500°С.

Кроме того, согласно изобретению, образцы с покрытиями, наносящимися в течении 65 минут, могут подвергать отжигу при температуре 950°С в течении 1 часа в воздушной атмосфере для кристаллизации молибдатов иттрия в покрытии и стабилизации его структуры соответственно.

Изобретение иллюстрируется чертежами, на которых изображено:

На фигуре 1 представлена схема установки ННВ-6,6-И1, где позиция 1 - источник питания, 2 - катод из молибдена, 3 - катод из иттрия, 4 - заготовка, 5 - металлическая плазма, 6 - газовая плазма, 7 - вакуумная камера. На фигуре 2 представлено схематичное изображение композита с покрытием, полученным по режиму №1, где 8 - композит с молибденовой матрицей (спектр 1 и спектр 2), 9 - адгезионный подслой покрытия (спектр 3), 10 - покрытие Y-Mo-O (спектр 4).

Пример конкретной реализации способа

Для нанесения покрытий использовалась установка ионно-плазменного напыления ННВ-6,6-И1, а в качестве подложки - образцы композитного материала с молибденовой матрицей, армированной волокном на основе оксидов Al2O3 и двойных оксидов Y и Al, а также образцы из нержавеющей стали 08Х18Н10.

Нанесение покрытий на основе молибдатов иттрия проводилось с двух однокомпонентных катодов из Мо и Y при температурах, не превышающих 500°С, по разработанной технологии в научно-исследовательской лаборатории. Давление в камере составляло 10-3 Па, потенциал на подложке 140-200 В, ток дуги электродуговых испарителей 50-150 А. Осаждение покрытий проводилось при подаче в камеру реакционного газа - химически чистого кислорода. Общее время нанесения покрытия составило 65 минут. Первый адгезионный подслой с пониженным содержанием кислорода наносился в течение 5 минут. Второй слой - покрытие из молибдатов иттрия - наносился в течение 60 минут.

С целью получения в составе покрытий молибдатов иттрия различного стехиометрического состава (Y2Mo3O12, Y2MoO6 и Y6MoO12), были использованы три экспериментально подобранные режима, каждый из которых отличается технологическими параметрами электродуговых испарителей и давлением реакционного газа. Для стабилизации структуры покрытиий образцы были подвергнуты отжигу при температуре 950°С в течении 1 часа в воздушной атмосфере, что привело к кристаллизации молибдатов иттрия в покрытии.

Исследование структуры показало, что полученные покрытия можно охарактеризовать как сплошные, без трещин и расслоений, толщиной около 35 мкм. По соотношению иттрия и молибдена проведен анализ соответствия химического состава покрытий стехиометрическим составам молибдатов иттрия Y2Mo3O12, Y2MoO6 и Y6MoO12, результаты которого приведены в таблице 1.

Как видно из данной таблицы, в результате энергодисперсионного химического анализа было обнаружено, что в покрытии Y2MoO6 в спектре 1 (оксидное волокно) содержится 48,34% кислорода (О), 22,86% алюминия (Al), 28,80% иттрия (Y) и 0% молибдена (Мо). В спектре 2 (молибденовая матрица) содержится 100% молибдена (Мо), остальные компоненты отсутствуют. В покрытии Y6MoO12 в спектре 3 (адгезионный подслой покрытия) содержится 47,86% кислорода (О), 0% алюминия (Al), 41,03% иттрия (Y) и 11,11% молибдена (Мо). В покрытии Y2Mo3O12 в спектре 4 (покрытие Y-Mo-O) содержится 66,18% кислорода (О), 0% алюминия (Al),6,85% иттрия (Y) и 26,98% молибдена (Мо). Представленные в таблице результаты свидетельствуют о возможности получении покрытия различного стехиометрического состава.

Итак, заявляемое изобретение позволяет наносить сплошные равномерные покрытия требуемого стехиометрического состава по всей поверхности детали, независимо от ее конфигурации, при температурах, не превышающих 500°С, без трещин и расслоений. Изобретение также позволяет, благодаря использованию высокотемпературных композитов с металлической матрицей, снизить массу конструкции без потери прочностных характеристик, а также повысить стойкость к газовой коррозии и продлить срок службы деталей из молибденовых сплавов за счет применения защитных покрытий на основе молибдатов иттрия.

Преимуществом данного изобретения также является возможность получения тонких (около 35 мкм) равномерных покрытий без трещин и расслоений, независимо от конфигурации подложки, за счет плазмохимических реакций и диффузионных процессов, протекающих при их росте. К преимуществам также относятся снижение массы конструкции без потери его прочностных характеристик, благодаря использованию высокотемпературных композитов с металлической матрицей, улучшение стойкости к газовой коррозии, обеспечение экологической чистоты процессов при производстве инструмента.


СПОСОБ НАНЕСЕНИЯ ЖАРОСТОЙКИХ ПОКРЫТИЙ Y-МО-О ИЗ ПЛАЗМЫ ВАКУУМНО-ДУГОВОГО РАЗРЯДА
СПОСОБ НАНЕСЕНИЯ ЖАРОСТОЙКИХ ПОКРЫТИЙ Y-МО-О ИЗ ПЛАЗМЫ ВАКУУМНО-ДУГОВОГО РАЗРЯДА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 146.
20.01.2018
№218.016.1d66

Способ формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты)

Изобретение относится к способу формирования нанокристаллического поверхностного слоя на деталях из алюминиевых сплавов (варианты) и может быть использовано для обработки лопаток газотурбинных двигателей. Формируют аморфный поверхностный слой путем бомбардировки его ионами одного из следующих...
Тип: Изобретение
Номер охранного документа: 0002640687
Дата охранного документа: 11.01.2018
04.04.2018
№218.016.2f3d

Способ управления системой защиты магнитоэлектрического генератора от короткого замыкания

Использование: в области электротехники. Технический результат: повышение надежности системы управления, системы защиты и пожаробезопасности магнитоэлектрического генератора. Согласно способу после обнаружения короткого замыкания на фазной обмотке генератора, данную обмотку последовательно...
Тип: Изобретение
Номер охранного документа: 0002644586
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2f5d

Гибридный магнитопровод статора электромеханических преобразователей энергии

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, механической прочности, энергоэффективности и минимизация тепловыделений электромеханических...
Тип: Изобретение
Номер охранного документа: 0002644577
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.330e

Устройство и способ автоматизированной очистки солнечной панели

Изобретение относится к системам автоматической очистки солнечных панелей. Устройство очистки солнечной панели, содержащее источник питания, соединенный с солнечной панелью, датчики контроля загрязнения и провода, расположенные на поверхности солнечной панели, отличающееся тем, что провода...
Тип: Изобретение
Номер охранного документа: 0002645444
Дата охранного документа: 21.02.2018
09.05.2018
№218.016.37e9

Магнитная система ротора с постоянными магнитами и способ ее изготовления

Изобретение относится к области электротехники, в частности к устройству роторов электрических машин с возбуждением от постоянных магнитов. Технический результат – повышение энергетических характеристик. Магнитная система ротора с постоянными магнитами содержит кольцевой цилиндр, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002646543
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3abd

Матрица для высадки деталей сложного профиля

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении деталей сложного профиля. Матрица для высадки содержит бандажное кольцо с внутренней конусной поверхностью и вставку с наружной конусной поверхностью и полостью, имеющей перепад диаметров....
Тип: Изобретение
Номер охранного документа: 0002647434
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3ad3

Беспазовый синхронный генератор с интегрированным магнитным подвесом

Изобретение: относится к электротехнике и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Технический результат состоит в повышении надежности и энергоэффективности системы измерения и управления, а также снижении массогабаритных показателей за...
Тип: Изобретение
Номер охранного документа: 0002647490
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3afc

Передача винт-гайка

Изобретение относится к области машиностроения, а более конкретно к устройствам преобразования вращательного движения в поступательное. Передача винт-гайка содержит винт, сопряженный с гайкой. Гайка выполнена в виде нескольких сегментов, имеющих внутреннюю резьбу, профиль, шаг которой и угол...
Тип: Изобретение
Номер охранного документа: 0002647394
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4307

Электрогидромеханический каверномер

Изобретение относится к области нефтегазовой промышленности и может быть использовано для измерения диаметра буровых скважин, а также их глубины. Технический результат: сокращение числа потребных спускоподъемных операций и повышение надежности каверномера. Каверномер выполнен...
Тип: Изобретение
Номер охранного документа: 0002649680
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4b27

Способ упрочнения деталей из жаропрочных сплавов

Изобретение относится к машиностроению и может быть использовано для упрочнения деталей из жаропрочных сплавов. Упрочнение деталей проводят дробеструйной обработкой шариками и микрошариками твердостью HRC 60-64, при давлении 0,6 МПа. Обработку проводят в несколько этапов: на первом этапе...
Тип: Изобретение
Номер охранного документа: 0002651847
Дата охранного документа: 24.04.2018
Показаны записи 11-20 из 36.
25.08.2017
№217.015.afae

Способ ионного азотирования титановых сплавов

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава, и может быть использовано для повышения эксплуатационных характеристик изделий. Способ ионного азотирования титановых сплавов в газовой смеси азот-аргон с...
Тип: Изобретение
Номер охранного документа: 0002611003
Дата охранного документа: 17.02.2017
26.08.2017
№217.015.e141

Способ азотирования титановых сплавов в тлеющем разряде

Изобретение относится к машиностроительной промышленности, а именно к химико-термической обработке поверхности изделий из титанового сплава и может быть использовано для повышения эксплуатационных характеристик изделий. Способ азотирования изделий из титановых сплавов в тлеющем разряде включает...
Тип: Изобретение
Номер охранного документа: 0002625518
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e1c6

Способ низкотемпературного ионного азотирования стальных изделий в магнитном поле

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для обработки широкого ассортимента деталей машин и инструмента, изготовленных из стали. Способ низкотемпературного ионного азотирования...
Тип: Изобретение
Номер охранного документа: 0002625864
Дата охранного документа: 19.07.2017
20.01.2018
№218.016.10cf

Способ низкотемпературного ионного азотирования титановых сплавов

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002633867
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.1d54

Способ локальной обработки стального изделия при ионном азотировании в магнитном поле

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для локального поверхностного упрочнения материалов. Способ локального ионного азотирования стального изделия включает проведение вакуумного...
Тип: Изобретение
Номер охранного документа: 0002640703
Дата охранного документа: 11.01.2018
29.05.2018
№218.016.5474

Способ локального ионного азотирования стальных изделий в тлеющем разряде с магнитным полем

Изобретение относится к области химико-термической обработки, а именно вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении. Способ локального азотирования стального изделия в тлеющем разряде в магнитном поле включает проведение вакуумного нагрева участка...
Тип: Изобретение
Номер охранного документа: 0002654161
Дата охранного документа: 16.05.2018
11.06.2018
№218.016.616a

Способ фильтрации капельной фазы при осаждении из плазмы вакуумно-дугового разряда

Изобретение относится к области нанесения покрытий из плазмы вакуумно-дугового разряда и может быть использовано для получения фильтрованной плазмы. Способ фильтрации капельной фазы из плазмы вакуумно-дугового разряда при осаждении многослойного покрытия системы Ti-Al на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002657273
Дата охранного документа: 09.06.2018
28.07.2018
№218.016.7602

Способ получения износостойкого градиентного покрытия системы ti-al на стальной детали в вакууме

Изобретение относится к области получения износостойких покрытий и может быть использовано для расширения ассортимента деталей машин и инструмента. Способ получения износостойкого градиентного покрытия системы Ti-Al на стальной детали в вакууме включает осаждение интерметаллидного покрытия...
Тип: Изобретение
Номер охранного документа: 0002662516
Дата охранного документа: 26.07.2018
28.07.2018
№218.016.7683

Способ создания макронеоднородной структуры на поверхности материалов

Изобретение относится к химико-термической обработке и может быть использовано в машиностроении и других областях промышленности. Способ обработки поверхности стального изделия включает проведение интенсивной поверхностной пластической деформации и ионное азотирование. Проведение интенсивной...
Тип: Изобретение
Номер охранного документа: 0002662518
Дата охранного документа: 26.07.2018
17.08.2018
№218.016.7c34

Способ низкотемпературного ионного азотирования стальных деталей

Изобретение относится к обработке металлов поверхностной пластической деформацией и вакуумному ионно-плазменному азотированию и может быть использовано в машиностроении и других областях промышленности для обработки широкого ассортимента деталей машин и инструмента, изготовленных из сталей....
Тип: Изобретение
Номер охранного документа: 0002664106
Дата охранного документа: 15.08.2018
+ добавить свой РИД