×
12.08.2019
219.017.be93

Результат интеллектуальной деятельности: НАНОСТРУКТУРИРОВАННЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С6-С8

Вид РИД

Изобретение

Аннотация: Предложен наноструктурированный катализатор гидрирования ароматических углеводородов С6-С8, состоящий из носителя, содержащего, мас.%: алюмосиликатные нанотрубки 81-85, гидрофобизирующий компонент 15-19, и рутения в виде наночастиц, нанесенного на носитель в количестве 0,5-6,0% от массы носителя, где алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью, а рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости указанных нанотрубок. Технический результат – обеспечение катализатором увеличения площади контакта молекул углеводородного сырья с каталитическими центрами, а также предотвращения контакта наночастиц рутения с водой, содержащейся в исходном сырье, за счет интеркалирования наночастиц рутения – высокодисперсной активной фазы во внутреннюю полости алюмосиликатных нанотрубок с гидрофобизированной внешней поверхностью. 9 пр., 1 табл.

Изобретение относится к катализаторам гидрирования ароматического сырья и может быть использовано в нефтехимической отрасли промышленности.

Процессы гидрирования ароматических соединений традиционно используют для производства важных продуктов нефтехимии.

Гидрирование бензола, в основном, направлено на производство циклогексана, используемого для производства капролактама, полимеризацией которого получают синтетическое волокно.

Ароматические углеводороды, являющиеся сырьем для каталитического гидрирования, как правило, получают путем дистилляции продуктов риформинга и/или пиролиза бензинов.

Конверсию бензола осуществляют путем каталитического гидрирования бензола в циклогексан.

В качестве катализаторов гидрирования ароматических углеводородов С6-С8 могут быть использованы катализаторы на основе благородных металлов VIII группы Периодической системы при проведении процесса в жидкой или газовой фазах. Газофазное гидрирование ароматических углеводородов осложняется отводом тепла, что в свою очередь негативно сказывается на селективности процесса. Гидрирование в жидкой фазе более предпочтительно, так как не требует сложного аппаратурного оформления, свойственного проведению процесса в газовой фазе. Кроме того, использование низких температур жидкофазного гидрирования обеспечивает значительно меньший выход побочных продуктов, снижение потерь. Поэтому наиболее предпочтительным является проведение процесса с использованием гетерогенных катализаторов в жидкой фазе. Последние в отличие от гомогенных не так чувствительны к содержанию воды в сырье, а экономические затраты на их регенерацию более приемлемы. Традиционно гетерогенный катализатор гидрирования ароматических соединений состоит из носителя, связующего и одного или нескольких активных металлов. В качестве активного компонента носителя наиболее часто используют оксиды алюминия (RU 2277079, 2001), кремния (RU 2404950, 2006), синтетические алюмосиликаты (RU 2296618, 2007). Применение носителя с мезопористой структурой оксида алюминия в качестве компонента катализатора описано в RU 2138329, 1999, RU 2198733, 2003, RU 2683776, 2015, US 5942645A, 1997, Е 0669162 В1, 1999, ЕР 0619143 А1, 1994, оксида кремния - в DE 2001128242 А1, 2001, CN 102753266 В, 2010, синтетических алюмосиликатов - в USA 5308814, 1994. В патенте RU 2138329, 1999 γ-оксид алюминия модифицируют хлором, оловом, оксидом кремния, оксидом вольфрама, триэтиленгликолем. Полученный катализатор обладает повышенной производительностью и устойчивостью к наличию соединений серы в сырье, кроме того он достаточно дешевый ввиду низкого содержания благородных металлов. В патенте CN 102753266 В катализатор готовят на аморфном оксиде кремния путем пропитки раствором активного металла и солями щелочноземельных металлов II группы. В патенте RU 2296618, 2005 в качестве носителя катализатора используют цеолит H-ZSM-5 с добавкой монтмориллонита или оксида алюминия, которые способствуют формированию высокодисперсных соединений активного металла. В данных работах показано, что использование катализаторов на основе мезопористых оксидов алюминия, кремния, цеолитов для гидрирования ароматических соединений в циклопарафины, позволяет существенно снизить долю побочных веществ при снижении потерь целевых продуктов. Известно, что мезопористые носители значительно увеличивают диффузию молекул субстрата к активным центрам, что обеспечивает наилучшую эффективность по сравнению с использованием микропористых материалов. В патенте DE 2001128242 А1, 2001 описаны легированные металлами VIII группы рутениевые суспензионные катализаторы гидрирования бензола в циклогексан (Pd, Pt или Rh). Такие катализаторы характеризуются высокой стоимостью из-за использования платиновых металлов, а отсутствие последних приводит к необходимости проведения процесса при более высоких температурах, что способствует увеличению содержания побочных продуктов гидрирования. Следует отметить, что катализаторы, имеющие в своем составе металлы VIII группы чувствительны к примесям влаги в сырье. Для решения этой проблемы проводят либо предварительную очистку сырья до минимально возможного содержания воды, либо используют катализаторы, характеризующиеся высоким содержанием активной фазы. Предварительная осушка сырья требует внедрения дополнительного оборудования и циклов производства, что значительно увеличивает эксплуатационные затраты. Повышение содержания благородных металлов экономически нецелесообразно в промышленном производстве, а замена таких металлов на более доступные требует повышения температуры процесса, что приводит не только к падению селективности по целевому продукту, но и более жесткому режиму работы технологического оборудования.

Наиболее близким по существу и назначению к предлагаемому изобретению является катализатор гидрирования ароматических углеводородов, представляющий собой рутений, нанесенный на пористую основу, имеющую мезо- и/или макропоры (RU 2404950, 2010). Наиболее оптимальными носителями являются активированный уголь, карбид кремния, окись алюминия, оксид кремния, окись титана, двуокись циркония или также их смеси. Предпочтительно используют окись алюминия, диоксид циркония или оксид кремния, наиболее предпочтительно - γ-окись алюминия или оксид кремния. Катализатор гидрирования предпочтительного состава получают методом нанесения рутения на основу с помощью пропитки носителя водными растворами солей рутения. Затем носитель, пропитанный раствором соли рутения, сушат при температурах от 110°С до 150°С и прокаливают. После прокаливания рутениевый катализатор активируют в токе водорода при температурах от 30 до 60°С. В качестве прекурсора катализатора используют ацетат рутения (III). Готовый катализатор содержит от 0,01 до 30% масс. рутения в пересчете на общую массу катализатора. Суммарный объем пор носителя составляет от 0,05 до 1.5 см3/г. Средний диаметр пор составляет от 5 до 20 нм. Структура распределения пор в носителе бимодальная, на макропоры приходится от 10 до 25% общего объема пор, на мезопоры от 55 до 75% общего объема пор. Процесс осуществляют в трубчатом реакторе непрерывного действия при давлении 20-32 атм. и температуре 60-120°С. Гидрированию по данному способу подвергают не только бензол, но и смесь бензола и толуола, смесь бензола и ксилолов или изомерную смесь ксилолов, или смесь бензола, толуола и ксилолов, или изомерную смесь ксилолов.

Недостатки известного катализатора заключаются в следующем. Несмотря на высокую конверсию бензола (99%.) в данном процессе, конверсия толуола в метилциклогексан не превышает 44%. Так же в данном патенте изучают влияние воды на гидрирование бензола. Для моделирования влияния воды проводят серию опытов в автоклаве до и после насыщения водой. Процесс осуществляют при температуре 100°С и давлении 32 атм. В результате катализатор показывает заметно пониженную активность. Кроме того, использование известного катализатора требует предварительной десульфуризации исходного сырья.

Технической проблемой, на которую направлено данное изобретение, является увеличение активности катализатора гидрирования ароматических углеводородов С6-С8 и повышение его устойчивости к дезактивации в присутствии воды, которая содержится в углеводородном сырье.

Указанная проблема решается созданием наноструктурированного катализатора гидрирования ароматических углеводородов С6-С8, состоящего из носителя, содержащего, % масс.

алюмосиликатные нанотрубки 81-85
гидрофобизирующий компонент 15-19,

и рутения в виде наночастиц, нанесенного на носитель в количестве 0,5-6,0% от массы носителя, причем алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью, а рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости указанных нанотрубок

Получаемый технический результат заключается в обеспечении катализатором увеличения площади контакта молекул углеводородного сырья с каталитическими центрами, а также в предотвращении контакта наночастиц рутения с водой, содержащейся в исходном сырье, за счет интеркалирования наночастиц рутения - высокодисперсной активной фазы во внутреннюю полость алюмосиликатных нанотрубок с гидрофобизированной внешней поверхностью.

Согласно настоящему изобретению катализатор состоит из носителя и рутения, нанесенного на носитель.

Катализатор готовят в три этапа.

На первом этапе к алюмосиликатным нанотрубкам - к природным или синтетическим алюмосиликатным нанотрубкам с общей формулой Al2Si2(OH)4*nH2O, где n=0-2, предпочтительно, галлуазиту с химической формулой Al2Si2(OH)4*2H2O, длиной 0,5-2 мкм, внешним и внутренним диаметром 40-60 и 10-30 нм соответственно, добавляют пероксид водорода и перемешивают в течение 12-24 ч. Далее смесь кипятят в течение 1-3 ч, после чего охлаждают до комнатной температуры. Твердую часть образованного продукта отделяют центрифугированием и промывают ее деионизированной водой путем трехкратного ресуспендирования с последующим центрифугированием. Далее обезвоживают полученные алюмосиликатные нанотрубки методом лиофильной сушки.

На втором этапе предобработанные вышеуказанным образом алюмосиликатные нанотрубки диспергируют в толуоле, возможно, с использованием ультразвука, в течение 0,5-2 ч. Затем добавляют гидрофобизирующий компонент, в качестве которого используют, например, триметоксипропилсилан, триметоксиоктилсилан или триметоксиоктадецилсилан и помещают в шейкер на 12-24 ч. Далее отделяют твердую часть от образованного продукта центрифугированием и промывают ее последовательно толуолом и изопропанолом путем ресуспендирования с последующим центрифугированием и сушкой при температуре 60-90°С в течение 12-24 ч. с получением носителя. В результате проведений вышеуказанных этапов алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью.

На третьем этапе расчетное количество соли хлорида рутения (III) растворяют в деионизированной воде и добавляют в раствор полученные нанотрубки с гидрофобизированной внешней поверхностью. Указанную смесь помещают в ультразвуковую ванну до образования суспензии. Образовавшуюся суспензию подвергают воздействию излучения СВЧ разряда мощностью 600-1000 Вт в течение 1-5 минут, отделяют центрифугированием твердую фазу. Затем промывают указанную твердую фазу деионизированной водой путем трехкратного ресуспендирования с последующим центрифугированием и добавляют 0,1-1,0 М водного раствора боргидрида натрия для восстановления наночастиц рутения до нульвалентного состояния. После восстановления указанную твердую фазу промывают деионизированной водой от продуктов разложения боргидрида натрия, центрифугируют и высушивают в течение 12-24 часа при температуре 50-90°С.

Количество нанесенного на носитель рутения в виде наночастиц составляет 0,5-6,0% от массы носителя.

При этом рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости алюмосиликатных нанотрубок с гидрофобизированной внешней поверхностью.

Интеркалирование наночастиц рутения во внутреннюю полость алюмосиликатных нанотрубок и, как следствие, образование высокодисперсной активной фазы обеспечивает увеличение площади контакта молекул углеводородного сырья с каталитическими центрами. Гидрофобизированная внешняя поверхность алюмосиликатных нанотрубок предотвращает контакт наночастиц рутения с водой, что обуславливает дезактивацию катализатора в присутствии воды, которая содержится в углеводородном сырье. Кроме того, мезопористая внутренняя полость алюмосиликатных нанотрубок не создает стерических затруднений для доступа органических молекул к активным центрам катализатора, а структурные особенности нанотрубок позволяют осуществлять направленную модификацию их внутренней/внешней поверхностей, что невозможно при использовании традиционных носителей (оксиды алюминия, кремния, титана, алюмосиликаты). Кроме того, использование заявленного катализатора приводит к снижению температуры процесса гидрирования.

Гидрирование ароматических углеводородов С6-С8 проводят в реакторе периодического действия из нержавеющей стали с внутренним тефлоновым вкладышем при давлении водорода 2,0-4,0 МПа, предпочтительно при 3,0 МПа и температуре 60-140°С, предпочтительно при 60-80°С.

Ниже представлены примеры, иллюстрирующие изобретение, но не ограничивающие его.

Пример 1

Используют катализатор, содержащий, % масс: алюмосиликатные нанотрубки - 85, гидрофобизирующий компонент - 15, рутений - 0,5. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита (галлуазит), в качестве гидрофобизирующего компонента -триметоксипропилсилан.

Проводят гидрирование сырья, содержащего, %масс: бензол - 46,8, вода - 53,2. При этом получают следующие результаты: конверсия бензола составляет 100%, селективность по циклогексану - 100%.

Пример 2

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 85, гидрофобизирующий компонент - 15, рутений - 0,5. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксипропилсилан.

Проводят гидрирование сырья, содержащего, % масс: толуол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия толуола составляет 100%, селективность по метилциклогексану - 100%.

Пример 3

Используют катализатор, содержащий, % масс: алюмосиликатные нанотрубки - 85, гидрофобизирующий компонент - 15, рутений - 0,5. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксипропилсилан.

Проводят гидрирование сырья, содержащего, % масс: этилбензол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия этилбензола составляет 77,5%, селективность по этилциклогексану - 100%.

Пример 4

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 83,5, гидрофобизирующий компонент - 16,5, рутений - 4,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктилсилан.

Проводят гидрирование сырья, содержащего, %масс: бензол - 46,8, вода - 53,2. При этом получают следующие результаты: конверсия бензола составляет 100%, селективность по циклогексану - 100%.

Пример 5

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 83,5, гидрофобизирующий компонент - 16,5, рутений - 4,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктилсилан.

Проводят гидрирование сырья, содержащего, %масс: толуол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия толуола составляет 100%, селективность по метилциклогексану - 100%.

Пример 6

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 83,5, гидрофобизирующий компонент - 16,5, рутений - 4,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктилсилан.

Проводят гидрирование сырья, содержащего, % масс: этилбензол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия этилбензола составляет 67,2%, селективность по этилциклогексану - 100%.

Пример 7

Используют катализатор, содержащий, % масс: алюмосиликатные нанотрубки - 81,0, гидрофобизирующий компонент - 19,0, рутений - 6,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктадецилсилан.

Проводят гидрирование сырья, содержащего, % масс: бензол - 46,8, вода - 53,2. При этом получают следующие результаты: конверсия бензола составляет 100%, селективность по циклогексану - 100%.

Пример 8

Используют катализатор, содержащий, % масс: алюмосиликатные нанотрубки - 81,0, гидрофобизирующий компонент - 19,0, рутений - 6,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктадецилсилан.

Проводят гидрирование сырья, содержащего, % масс: толуол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия толуола составляет 100%, селективность по метилциклогексану - 100%.

Пример 9

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 81,0, гидрофобизирующий компонент - 19,0, рутений - 6,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктадецилсилан.

Проводят гидрирование сырья, содержащего, %масс: этилбензол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия этилбензола составляет 77,2%, селективность по этилциклогексану - 100%.

Использование описываемого катализатора, содержащего компоненты в иных концентрациях, входящих в заявленный интервал приводит к аналогичным результатам. Использование компонентов, выходящих за данный интервал, не приводит к желаемым результатам.

Условия проведения процесса гидрирования в присутствии описываемого катализатора и полученные при этом результаты по приведенным примерам 1-9 приведены в таблице 1.

Из вышеприведенных данных следует, что описываемый катализатор устойчив к наличию воды в исходном сырье и обладает более высокой активностью по сравнению с известным. Так, конверсия толуола составляет 100%, что на 56-65% выше, чем при использовании известного катализатора; конверсия бензола и этилбензола составляет, 100% и до 77,5%, соответственно, селективность по метилциклогексану составляет 100%, что на 46,3-57,3% выше, чем при использовании известного катализатора; селективность по циклогексану и этилциклогексану составляет по 100% для каждого).

Источник поступления информации: Роспатент

Показаны записи 11-20 из 44.
03.07.2019
№219.017.a3c2

Низкотемпературная пластичная смазка

Настоящее изобретение относится к низкотемпературной пластичной смазке для узлов трения и может быть использовано в различных отраслях промышленности, например в нефтепереработке и нефтехимии, машиностроении, энергетике, пищевой промышленности. Сущность: низкотемпературная пластичная смазка...
Тип: Изобретение
Номер охранного документа: 0002693008
Дата охранного документа: 01.07.2019
12.08.2019
№219.017.be99

Индикаторный элемент для обнаружения и идентификации разливов жидких углеводородов нефти и нефтепродуктов

Изобретение относится к области обнаружения, идентификации и дистанционного мониторинга углеводородных загрязнителей водных сред и может быть использовано для экспрессного визуального обнаружения разливов и утечек жидких углеводородных топлив. Изобретение касается индикаторного элемента для...
Тип: Изобретение
Номер охранного документа: 0002696982
Дата охранного документа: 08.08.2019
02.10.2019
№219.017.cb5e

Способ получения биотоплива

Изобретение описывает способ получения биотоплива, заключающийся в том, что предварительно биомассу микроводорослей смешивают с водой в количестве 90,0-97,0 мас. % с поддержанием в процессе перемешивания жизнедеятельности фотосинтезирующих микроорганизмов, входящих в состав биомассы,...
Тип: Изобретение
Номер охранного документа: 0002701372
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.d136

Пластичная смазка

Изобретение относится к пластичным смазкам, которая может быть использована в механизмах различного назначения, работающих при температуре до 200°С. Сущность: пластичная смазка содержит, мас. %: комплексное кальциевое мыло в виде смеси кальциевого мыла стеариновой кислоты, кальциевого мыла...
Тип: Изобретение
Номер охранного документа: 0002700711
Дата охранного документа: 19.09.2019
02.10.2019
№219.017.d143

Способ обеспечения энерготехнологической эффективности магистрального транспорта газа

Изобретение относится к энергосберегающим технологиям магистрального транспорта газа. Сущность изобретения: для магистрального транспорта газа в блоке расчета параметров регулирования формируют модель базового участка магистрального газопровода, состоящего из головной компрессорной станции,...
Тип: Изобретение
Номер охранного документа: 0002700756
Дата охранного документа: 19.09.2019
12.10.2019
№219.017.d52a

Микро-мезопористый катализатор изомеризации ксилолов

Изобретение относится к области катализаторов для процессов изомеризации ксилолов и сырья, содержащего ароматические углеводороды С-8, и может быть использовано в таких отраслях промышленности, как нефтехимия и нефтепереработка. Микро-мезопористый катализатор изомеризации ксилолов состоит из...
Тип: Изобретение
Номер охранного документа: 0002702586
Дата охранного документа: 08.10.2019
17.10.2019
№219.017.d6bc

Компрессорная установка

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор. Сопло эжектора гидравлически связано через обратный...
Тип: Изобретение
Номер охранного документа: 0002702952
Дата охранного документа: 14.10.2019
04.11.2019
№219.017.de23

Способ получения клатратных гидратов для хранения и транспортировки газов

Изобретение описывает способ получения клатратных гидратов, включающий формирование порошкообразной дисперсии путем смешивания дисперсного гидрофобного порошкообразного диоксида кремния и воды, охлаждение полученной порошкообразной дисперсии до температуры в диапазоне от минус 200°С до минус...
Тип: Изобретение
Номер охранного документа: 0002704971
Дата охранного документа: 01.11.2019
13.11.2019
№219.017.e100

Ингибитор гидратообразования

Изобретение относится к составам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья. Ингибитор...
Тип: Изобретение
Номер охранного документа: 0002705645
Дата охранного документа: 11.11.2019
16.11.2019
№219.017.e345

Способ ингибирования гидратообразования

Изобретение относится к способам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения...
Тип: Изобретение
Номер охранного документа: 0002706276
Дата охранного документа: 15.11.2019
Показаны записи 11-20 из 100.
20.09.2014
№216.012.f5e1

Биокатализатор для переэтерификации жиров и способ его получения

Группа изобретений относится к биотехнологии и пищевой промышленности. Предложен способ получения биокатализатора для переэтерификации жиров. Проводят аминирование гранулированного силикагеля или диоксида кремния дисперсностью 0,3-1,0 мм аминопропилтриэтоксисиланом. Затем полученный...
Тип: Изобретение
Номер охранного документа: 0002528778
Дата охранного документа: 20.09.2014
27.10.2014
№216.013.02c5

Способ переработки лигноцеллюлозного сырья

Способ переработки лигноцеллюлозного сырья предусматривает смешивание лигноцеллюлозного сырья с ионной жидкостью - солью замещенного имидазолия, выдерживание под вакуумом при температуре 80-100С и перемешивании, охлаждение, добавление к смеси этанола, перемешивание. Образовавшуюся в результате...
Тип: Изобретение
Номер охранного документа: 0002532107
Дата охранного документа: 27.10.2014
10.12.2014
№216.013.0d7d

Способ добычи вязкой нефти

Изобретение относится к нефтеперерабатывающей промышленности. Технический результат - повышение степени извлечения вязкой нефти. В способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости...
Тип: Изобретение
Номер охранного документа: 0002534870
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0df1

Способ переработки тяжелого углеводородного сырья

Изобретение относится к нефтепереработке. Изобретение касается обработки тяжелого углеводородного сырья электромагнитным излучением с частотой 40-55 МГц, мощностью 0,2-0,5 кВт, при температуре 50-70°C, атмосферном давлении и времени обработки 1-24 ч, с последующим каталитическим крекингом...
Тип: Изобретение
Номер охранного документа: 0002534986
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0df8

Способ приготовления катализатора для получения дизельного топлива из сырья, содержащего триглицериды жирных кислот

Изобретение относится к способу приготовления катализатора для получения дизельного топлива из сырья, содержащего триглицериды жирных кислот. Данный способ заключается в нанесении на носитель - аморфный оксид алюминия - методом пропитки с последующим просушиванием и прокаливанием...
Тип: Изобретение
Номер охранного документа: 0002534993
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1014

Способ кислотной обработки карбонатного пласта

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности кислотной обработки карбонатного пласта. Способ кислотной обработки карбонатного пласта включает предварительную промывку скважины органическим растворителем, затем последовательную закачку в...
Тип: Изобретение
Номер охранного документа: 0002535538
Дата охранного документа: 20.12.2014
10.04.2015
№216.013.3d47

Способ получения биоэмульгатора

Изобретение относится к биотехнологии. Биоэмульгатор получают путем разрушения клеточных стенок биомассы цианобактерий, добавления к полученному продукту последовательно хлороформа, метанола, водного раствора сульфата аммония с поочередным перемешиванием смесей, образующихся после каждого...
Тип: Изобретение
Номер охранного документа: 0002547175
Дата охранного документа: 10.04.2015
20.04.2016
№216.015.370f

Способ диагностики дефектов на металлических поверхностях

Изобретение относится к способам обнаружения дефектов и трещин на поверхности металлического оборудования и трубопроводов. На поверхность контролируемого объекта последовательно наносят в направлении от большего к меньшему диаметру суспензию наночастиц металла, обладающих свойством...
Тип: Изобретение
Номер охранного документа: 0002581441
Дата охранного документа: 20.04.2016
13.01.2017
№217.015.6b76

Способ переработки тяжелого углеводородного сырья

Изобретение относится к способу переработки тяжелого углеводородного сырья путем его обработки электромагнитным излучением с частотой 57-65 МГц, мощностью 0,2-1,0 кВт при температуре 50-70°С, давлении 0,2-0,6 МПа и времени обработки 3-7 часов, с последующим каталитическим крекингом...
Тип: Изобретение
Номер охранного документа: 0002592548
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.8267

Способ ингибирования образования гидратов в углеводородсодержащем сырье

Использование: изобретение относится к способам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для...
Тип: Изобретение
Номер охранного документа: 0002601649
Дата охранного документа: 10.11.2016
+ добавить свой РИД