×
12.08.2019
219.017.be8a

Способ экспериментального определения статико-динамических характеристик бетона

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Предлагаемое изобретение относится к области строительства, в частности к экспериментальному определению параметров статико-динамического деформирования бетона. В процессе испытаний используется два опытных образца-близнеца, нагружение которых осуществляется в два этапа без использования демпфирующих элементов, при этом на первом этапе оба образца нагружаются квазистатической нагрузкой до заданного уровня, на втором этапе первый образец догружается до разрушения высокоскоростной (ударной) нагрузкой, второй - квазистатической нагрузкой, как и на первом этапе испытаний. В процессе нагружения регистрируются приращения деформаций и предельная разрушающая нагрузка, а затем по результатам измерений деформаций предельной статической и динамической нагрузок строятся диаграммы «напряжения - деформации» бетона при статико-динамическом для первого образца и статическом для второго образца нагружении, после чего по этим диаграммам определяются динамический модуль в зависимости от предельного времени динамического догружения и уровня напряженного состояния, с которого производится динамическое догружение, а также динамическая прочность бетона и коэффициент увеличения динамической прочности бетона. Технический результат - определение динамического модуля деформаций бетона в зависимости от предельного времени динамического догружения и уровня напряженного состояния с которого производится динамическое догружение, а также динамической прочности бетона и коэффициента увеличения динамической прочности бетона при различных режимах нагружения. 1 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области строительства, в частности к определению параметров деформирования бетона при его статико-динамическом догружении до уровня, не превышающего статический предел прочности бетона на сжатие и динамическом догружении с заданным ускорением (скоростью) до разрушения.

Проектирование железобетонных конструкций при особых, в том числе аварийных воздействиях, ведется с использованием статических и статико-динамических деформационных и прочностных характеристик бетона.

Призменную прочность и модуль деформаций бетона определяют в ходе проведения статических испытаний путем постепенного (ступенчатого) нагружения бетонных образцов с использованием пресса [1]. Недостатком данного способа является невозможность определения характеристик статико-динамического деформирования бетона.

Расширение области экспериментального определения статико-динамических характеристик бетона, заключается в возможности получения параметров диаграмм деформирования бетона при статическом приложении нагрузки и динамическом догружении способом, описанном в [2]. Данный способ позволяет определять параметры статико-динамического догружения бетона в зависимости от уровня статического нагружения путем динамического догружения бетонного образца. Недостатком данного способа является относительно невысокая динамическая нагрузка на образец и скорость нагружения бетонных призм, что ограничивает испытания высокопрочного бетона, а также относительно невысокая точность измерений из-за значительного демпфирования ромбового домкрата и пружины кольцевого типа.

Наиболее близким решением к заявленному изобретению является способ экспериментального определения статико-динамических диаграмм деформирования бетона, в котором [3] за счет применения оси с различными диаметрами сечений, осуществляется деформирование образца при резком нагружении на заданную величину. Техническим результатом этого изобретения является упрощение способа испытания, расширение возможности заранее задавать перемещение при догружении. Недостатком данного способа экспериментального определения статико-динамических характеристик бетона также является наличие целой системы механических устройств (типа пружин) с различными демпфирующими характеристиками, которые значительно снижают точность определения предельного времени и динамического догружения от момента начала догружения до разрушения бетонного образца. Кроме того, указанный способ не позволяет фиксировать картину деформаций и процесс образования и развития трещин при нагружении образца и измерять динамические деформации.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является определение динамического модуля деформаций бетона в зависимости от предельного времени динамического догружения и уровня напряженного состояния, с которого производится динамическое догружение, а также динамической прочности бетона и коэффициента увеличения динамической прочности бетона при различных режимах нагружения.

Технический результат достигается тем, что в предлагаемом способе экспериментального определения характеристик статико-динамического деформирования бетона, заключающимся в закреплении опытного бетонного образца в виде бетонной призмы между нагрузочными плитами испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение сжимающей нагрузки в процессе нагружения, и регистрации усилия нагружения, деформаций и трещинообразования призмы во времени, с использованием высокоскоростной динамо-машины и цифровой опытно-измерительной системы, типа VIC-2D, действие которой совмещено с высокоскоростной оптической камерой, типа PHOTRON GASTCAM SA2, согласно изобретению нагружение с использованием динамо-машины производится в два этапа и для двух образцов. На первом этапе - кратковременное, непрерывное повышение нагрузки со скоростью 0,6±0,2 МПа/сек до заданного уровня в обоих образцах под обычным прессом и выдержкой их под нагрузкой для стабилизации нагружения, на втором - высокоскоростное динамическое догружение (удар) молотом динамической машины с заданной скоростью нагружения на контактной поверхности опытного образца до разрушения для первого образца и непрерывным догружением второго образца со скорость 0,6±0,2 МПа/сек до разрушения последнего.

На фигуре 1 представлена схема устройства для реализации предлагаемого способа определения предельного времени динамического догружения, динамического модуля и динамической прочности бетона (фиг. 1, разрез А-А), состоящего из бетонного образца в виде призмы 1, с соотношением высоты к размеру сечения призмы равным четырем (h/a=4), которая устанавливается в специальное устройство, состоящее нижней плиты 2, тяжей 3, верхней подвижной плиты - траверсы 4, опирающейся сверху на центрирующую полусферическую пластину 5, нижняя плита 4 и верхняя плита - траверса 5 имеют по углам отверстия в которые пропускаются тяжи 3, на которые сверху над плитой - траверсой одеваются цилиндрические втулки 6 и на верхние концы тяжей, имеющих резьбу на длине выше втулок, навинчиваются гайки 7. Втулки 6 имеют внутренний диаметр больше диаметра тяжа, что исключает трение между втулкой и тяжом при динамическом догружении испытуемого образца-призмы и обеспечивает вертикальное перемещение верхней плиты-траверсы 4 с центрирующей пластиной 5. Центрирующая полусферическая пластина 5 позволяет обеспечить шарнирно подвижное на верхнем торце и неподвижное на нижнем торце опирание образца-призмы и исключает изменяемость устройства при нагружении.

Собранное описанным способом устройство вместе с образцом-призмой устанавливается на нижнюю платформу 8 высокоскоростной динамо - машины прижимается сверху через жесткий штамп 9 до начала нагружения исследуемого образца. Для регистрации деформационных характеристик и центрирования бетонных образцов призм при их статическом нагружении используются тензорезисторы 10 и 11, устанавливаемые на боковых поверхностях образцов призм. По вертикальным осям их боковых поверхностей - для измерения продольных деформаций, и посередине высоты образца - для измерения поперечных деформаций. Для регистрации деформационных структурно-механических характеристик образцов призм и процесса трещинообразования при их динамическом нагружении используется цифровой опытно-измерительной системы типа VIC-2D, действие которой совмещено с высокоскоростной оптической камерой 12 типа PHOTRON GASTCAM SA2.

Способ осуществляется следующим образом.

До начала нагружения опытных образцов в них создается усилие обжатия. Начальное усилие обжатия образца, которое в последующем принимают за условный нуль, должно быть не более 2% от ожидаемой разрушающей нагрузки. Перед испытанием образец с приборами устанавливают центрально по разметке плиты пресса и проверяют совмещение начального отсчета с делением шкалы прибора. При центрировании образцов необходимо, чтобы в начале испытания от условного нуля до нагрузки, равной (40+5%) от разрушающей отклонения деформаций по каждой грани (образующей) не превышали 15% их среднего арифметического значения.

Нагружение первого образца-близнеца осуществляется в два этапа. На первом этапе - низкоскоростное статическое нагружение производится под прессом непрерывно со скоростью 0,6±0,2 МПа/сек до заданного уровня нагрузки, не превышающего 0,6 от разрушающей и нагрузка в образце призмы, фиксируется путем закручивания гаек 7. Образец выдерживается до 5 минут при этой нагрузкой для того чтобы перенести его из-под пресса на динамо - машину с измерением деформаций до и после выдержки. На втором этапе испытаний первый образец-близнец догружается высокоскоростным нагружением (ударом) до его разрушения. При этом цифровой системой высокоскоростной камеры регистрируется приращение деформаций опытного образца до его разрушения, предельная динамическая нагрузка и предельное время динамического нагружения.

Второй образец-близнец нагружается с той же скоростью что и первый на первом этапе нагружения до заданного уровня нагружения. На втором этапе после аналогичной первому образцу-близнецу выдержки, второй образец-близнец нагружается также, как и на первом этапе испытаний но до разрушения. При этом регистрируются приращения деформаций цифровой опытно-измерительной системой типа VIC-2D, действие которой совмещено с высокоскоростной оптической камерой типа PHOTRON GASTCAM SA2 и тензорезисторами до разрушения, а также предельная разрушающая нагрузка.

По результатам измерений деформаций предельной статической и динамической нагрузок строятся диаграммы (фиг. 2) «напряжения-деформации» бетона («σ-ε») при статико-динамическом кривая 1 (о-а - статический участок, а-б - динамический участок) для близнеца 1 и статическом - кривая 2 (о-а и а-с - статические участки) для близнеца 2 нагружении. По этим диаграммам определяются начальный модуль деформации бетона E0=tgα0 и динамический модуль E1d=tgα1 в зависимости от предельного времени динамического догружения, динамическая прочность бетона и ϕ - коэффициент увеличения динамической прочности бетона, равный отношению Rbd/Rb.

[1] ГОСТ 24452-80 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона. - М.: НИИЖБД. 1982. - 15 с.

[2] Патент РФ №2482480, кл. G01N 3/00, 2006

[3] Патент РФ №2545781, кл. G01N 33/38 (2006.01) G01N 3/00, 2006 8


Способ экспериментального определения статико-динамических характеристик бетона
Способ экспериментального определения статико-динамических характеристик бетона
Способ экспериментального определения статико-динамических характеристик бетона
Источник поступления информации: Роспатент

Показаны записи 1-10 из 40.
20.08.2016
№216.015.4f72

Неизвлекаемая опалубка для изготовления колодца под анкерное крепление

Изобретение относится к строительству и может быть использовано при проектировании и строительстве жилых, общественных и промышленных зданий, сооружений. Техническим результатом является повышение прочности, жесткости и надежности анкерного крепления. Указанные технические результаты...
Тип: Изобретение
Номер охранного документа: 0002595031
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6bfd

Опалубка для изготовления колодца под анкерное крепление

Изобретение относится к строительству и может быть использовано при проектировании и строительстве жилых, общественных и промышленных зданий, сооружений. Техническим результатом является повышение прочности, жесткости и надежности анкерного крепления, уменьшение глубины его заложения в...
Тип: Изобретение
Номер охранного документа: 0002592579
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7115

Анкерное крепление

Изобретение относится к строительству и может быть использовано при проектировании и строительстве жилых, общественных и промышленных зданий, сооружений. Анкерное крепление состоит из анкерного болта с резьбой в верхней части и нижней анкерующей, заливаемой бетоном. К верхней половине...
Тип: Изобретение
Номер охранного документа: 0002596618
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71ba

Опалубка для изготовления колодца под анкер

Изобретение относится к строительству и может быть использовано при проектировании и строительстве жилых, общественных и промышленных зданий, сооружений. Техническим результатом является возможность размещения в оставляемой в бетоне цилиндрической оболочке элементов крепления нижней части любых...
Тип: Изобретение
Номер охранного документа: 0002596616
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71fb

Извлекаемая опалубка для изготовления колодца под анкерное крепление

Изобретение относится к строительству и может быть использовано при проектировании и строительстве жилых, общественных и промышленных зданий, сооружений. Техническим результатом является повышение прочности, жесткости и надежности анкерного крепления. Указанные технические результаты...
Тип: Изобретение
Номер охранного документа: 0002596614
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.85f7

Сейсмоизолирующая система "свая в трубе в опускном колодце"

Изобретение относится к строительству и может быть использовано при проектировании и строительстве жилых, общественных и промышленных зданий, сооружений. Сейсмоизолирующая система «свая в трубе в опускном колодце» состоит из здания на свайном фундаменте с высоким ростверком, окруженного...
Тип: Изобретение
Номер охранного документа: 0002603317
Дата охранного документа: 27.11.2016
26.08.2017
№217.015.e2ef

Способ изготовления вариатропного ячеистого бетона

Изобретение относится к промышленности строительных материалов и может быть использовано для производства конструкционно-теплоизоляционных изделий и конструкций из ячеистого бетона. Способ изготовления вариатропного ячеистого бетона включает предварительную обработку вяжущего, мелкого...
Тип: Изобретение
Номер охранного документа: 0002626092
Дата охранного документа: 21.07.2017
29.12.2017
№217.015.fa00

Сборная железобетонная форшахта многократного применения

Изобретение относится к области строительства и может быть использовано при сооружении подземных конструкций типа «стена в грунте», а именно для устройства форшахты, применяемой при выполнении монолитной траншейной «стены в грунте». Сборная железобетонная форшахта состоит из сборных...
Тип: Изобретение
Номер охранного документа: 0002639766
Дата охранного документа: 22.12.2017
04.04.2018
№218.016.314f

Палатка с повышенным уровнем безопасности

Изобретение относится к области строительства, в частности к палаткам. Технический результат изобретения заключается в обеспечении безопасной эксплуатации палатки при обогреве ее внутреннего объема излучением внешнего источника. Палатка содержит каркас и имеет часть поверхности, изготовленные...
Тип: Изобретение
Номер охранного документа: 0002645038
Дата охранного документа: 15.02.2018
29.05.2018
№218.016.52bd

Способ регулирования мощности реактивных гидротурбин

Изобретение относится к области энергетического машиностроения, а именно к способу регулирования мощности реактивной турбины. Способ включает закручивание потока воды перед входными кромками лопастей рабочего колеса. Поток воды дополнительно закручивают на участке после устройства для...
Тип: Изобретение
Номер охранного документа: 0002653647
Дата охранного документа: 11.05.2018
Показаны записи 1-1 из 1.
04.07.2020
№220.018.2f0c

Платформенный сборно-монолитный стык

Изобретение относится к области строительства, а именно к платформенному сборно-монолитному стыку. Технический результат - повышение прочности стыка. Платформенный стык содержит многопустотные плиты перекрытия, опертые на внутренние стеновые панели. В торце плиты над пустотами выполнены...
Тип: Изобретение
Номер охранного документа: 0002725351
Дата охранного документа: 02.07.2020
+ добавить свой РИД