×
12.08.2019
219.017.be6e

Результат интеллектуальной деятельности: Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией

Вид РИД

Изобретение

№ охранного документа
0002696976
Дата охранного документа
08.08.2019
Аннотация: Изобретение относится к радиотехнике и может быть использовано в приемниках спутниковых сигналов с ГММС-модуляцией. Технический результат состоит в уменьшении порядка астатизма системы с обратной связью, что повышает устойчивость системы по сравнению с системой ФАПЧ 3-го порядка. Для этого в способе фазовой и тактовой синхронизации, основанном на использовании системы фазовой автоподстройки частоты 1-го порядка, состоящем из вычисления фазовой ошибки, равной четырехкратной оценке фазы, развертывания фазовой ошибки, умножения фазовой ошибки на масштабирующий коэффициент, получения генератором обратной связи моногармонического комплексного сигнала с фазой, равной по величине проинтегрированному значению развернутой и отмасштабированной фазы, перемножения входного сигнала с сигналом с выхода генератора обратной связи, согласно изобретению после перемножения осуществляют возведение результирующего сигнала в квадрат, переносят частоту полученного сигнала на половину частоты следования символов вверх для формирования первой компоненты и аналогично переносят частоту вниз для формирования второй компоненты, фильтруют с помощью ФНЧ и перемножают обе компоненты для получения сигнала, содержащего четырехкратную оценку фазы, уменьшают частоту полученного сигнала в 4 раза, осуществляют его комплексное сопряжение и перемножение с результирующим сигналом для получения сигнала с нулевым частотным и фазовым сдвигом. 1 ил.

Изобретение относится к радиотехнике и может быть использовано в приемниках спутниковых сигналов с ГММС-модуляцией. Способ относится к классу замкнутых методов цифровой синхронизации сигналов. Способ основан на восстановлении несущей частоты путем возведения сигнала во 2-ую степень и дальнейшей фазовой синхронизации с помощью прямой и обратной связей.

Известны способы восстановления несущей частоты [1, 2, 3].

На практике, фаза спутникового сигнала под действием эффекта Доплера приобретает искажение вида ϕ(k)= аk2 /2+ν0k+ϕ0 [1, с. 28], где ϕ0 и ν0 - фаза и частота сигнала в начальный момент времени, а - скорость изменения частоты сигнала. Исходя из этого, недостатком способа, описанного в патенте [2], является отсутствие обратной связи, но имеются фильтры нижних частот (ФНЧ), что может привести к выходу полосы сигнала за пределы полосы пропускания ФНЧ, и как следствие, к неработоспособности системы. Также в этом способе используется вычисление быстрого преобразования Фурье, что требует достаточно больших вычислительных затрат и может быть неприемлемым в системах реального времени.

Из известных способов наиболее близким к предлагаемому является способ восстановления несущей, описанный в [3 с. 90, 4 с. 292]. Данный способ основан на возведении сигнала в квадрат. В результате чего, в спектре сигнала появляются частоты, соответствующие верхней и нижней частотам передачи дискретных символов «0» и «1». Далее сигнал разделяется на 2 канала и в каждом из каналов фильтруется с помощью систем фазовой автоподстройки частоты (ФАПЧ). Системы ФАПЧ настроены соответственно на частоту несущей ± половина от частоты смены символов. Далее происходит деление частоты на 2, сложение сигналов в каждом из каналов для получения несущей частоты и перемножение сигналов в каждом из каналов для получения тактовой частоты. Затем, полученная несущая частота перемножается с исходным сигналом, тем самым устраняя частотный и фазовый сдвиги.

Недостатком способа-прототипа является необходимость построения системы ФАПЧ с порядком астатизма равным 3, для того, чтобы скомпенсировать до нуля фазовую ошибку при линейно изменяющемся частотном сдвиге. Однако система ФАПЧ 3-го порядка менее устойчива, чем ФАПЧ 1-го порядка.

Поэтому за прототип был выбран способ фазовой синхронизации, основанный на ФАПЧ 1-го порядка [5 с. 29]. Способ-прототип основан на вычислении фазовой ошибки, которая далее подвергается нелинейному преобразованию и умножению на масштабирующий коэффициент. Далее сигнал подается на генератор, управляемый напряжением (ГУН), который на выходе производит моногармонический сигнал с частотой равной величине входного сигнала.

Предлагаемый способ базируется на использовании петли обратной связи с астатизмом 1-го порядка для коррекции изменения частоты и использовании прямой связи для коррекции фазы и остаточного частотного сдвига сигнала.

Задача, решаемая предлагаемым изобретением, - уменьшение порядка астатизма системы с обратной связью.

Решение поставленной задачи достигается тем, что в способе фазовой и тактовой синхронизации, основанном на использовании системы фазовой автоподстройки частоты 1-го порядка, состоящем из вычисления фазовой ошибки равной четырехкратной оценке фазы, развертывания фазовой ошибки, умножения фазовой ошибки на масштабирующий коэффициент, получении генератором обратной связи моногармонического комплексного сигнала с фазой равной по величине проинтегрированному значению развернутой и отмасштабированной фазы, перемножения входного сигнала с сигналом с выхода генератора обратной связи, согласно изобретению после перемножения осуществляют возведение результирующего сигнала в квадрат, переносят частоту полученного сигнала на половину частоты следования символов вверх для формирования первой компоненты и аналогично переносят частоту вниз для формирования второй компоненты, фильтруют с помощью ФНЧ и перемножают обе компоненты для получения сигнала, содержащего четырехкратную оценку фазы, уменьшают частоту полученного сигнала в 4 раза, осуществляют его комплексное сопряжение и перемножение с результирующим сигналом для получения сигнала с нулевым частотным и фазовым сдвигом.

Технический результат изобретения заключается в уменьшении астатизма контура обратной связи до 1-го порядка, что повышает устойчивость системы, по сравнению с системой ФАПЧ 3-го порядка [5 с. 39].

На фигуре представлена схема фазовой синхронизации, обеспечивающая работу данного способа.

Предлагаемый способ работает следующим образом. Поступающие на вход отсчеты смеси комплексного сигнала и шума , где n(k) - шумовая компонента, Es - энергия сигнала на символ, T - символьный период, τ - временная задержка между генератором тактовых импульсов в приемнике и передатчике, α -значение бита ±1, перемножаются в смесителе 1 с сигналом с выхода ГУН 13.

Затем сигнал с выхода перемножителя 1 возводится в квадрат блоком 2. В результате возведения в квадрат у сигнала частично снимается модуляция, его фаза, а, следовательно, и частота, удваиваются, и в спектре сигнала появляются две частоты 2dϕ(k) / dk ± ƒsym /2, а сигнал приобретает вид

где знак «+» или «-», зависит от передаваемых битов, и показывает, увеличивается или уменьшается фаза сигнала, ƒsym - символьная скорость сигнала.

Далее сигнал разделяется на два канала. В первом канале сигнал с выхода устройства возведения в квадрат 2 подается на вход смесителя 4, где перемножается с комплексным гармоническим сигналом частоты с выхода тактового генератора 3, в результате чего на выходе получается сигнал частоты

Также сигнал с выхода тактового генератора 3 подается на вход блока комплексного сопряжения 5. Во втором канале сигнал с выхода устройства возведения в квадрат 2 подается на вход смесителя 6, где перемножается с комплексным сигналом отрицательной частоты с выхода блока 5.

Сигнал с выхода смесителя 4 в первом канале подается на вход ФНЧ 7, а сигнал во втором канале с выхода смесителя 6 подается на вход аналогичного ФНЧ 8. На блок умножения 9 подаются сигналы с выходов ФНЧ 7 и 8, которые имеют вид и соответственно, где и - шумовые компоненты на выходе фильтров.

В результате чего на выходе перемножителя 9 получается сигнал частоты 4dϕ(k)/dk, который имеет вид . Пренебрегая шумовой компонентой , сигнал примет вид , где является оценкой фазы сигнала.

Сигнал с выхода перемножителя 9 подается на вход фазового детектора 10. В фазовом детекторе от входного сигнала берется аргумент, который представляет собой ошибку слежения за фазой. Полученная фаза с выхода фазового детектора подается на блок развертывания фазы 11, где она переводится из разрывной функции со значениями в интервале (-π, π) в непрерывную функцию без разрывов. В результате на выходе блока 11 получается ошибка слежения за фазой вида .

С выхода блока 11 сигнал подается на вход умножителя 12, который осуществляет умножение сигнала на коэффициент K. Сигнал с выхода умножителя 11 подается на вход ГУН 13, в котором генерируется комплексный гармонический сигнал с фазой ϕГУН(k), пропорциональной проинтегрированному входному сигналу. Также, сигнал с выхода перемножителя 9 подается на блок 14, в котором комплексно сопрягается, также в этом блоке частота и фаза сигнала уменьшается в 4 раза, и на выходе получается сигнал вида .

На блок умножения 15 подается сигнал с выхода блока предварительного переноса частоты 1 и с выхода блока 14, а на выходе получается сигнал вида , имеющий нулевую частоту и неопределенность фазы (для способов, основанных на возведении сигнала в степень [3 с. 90], к которым относится предложенный способ), равную ±π/4.

Доказательство того, что обратная связь компенсирует изменение частоты, получается из решения уравнения для ошибки слежения за фазой . Если положить, что е(k) в стационарном состоянии имеет вид е(k)=αk+β, а также, что при прохождении сигнала через ФНЧ, фаза сигнала приобретает фазовый сдвиг ψ, который зависит от фазо-частотной характеристики ФНЧ, то сигнал с выхода ГУН имеет фазу , где C0 - сдвиг фазы ГУН относительно фазы несущей. Тогда уравнение для ошибки слежения за фазой перепишется следующим образом или, после подстановок, . Откуда, после сравнения коэффициентов при одинаковых степенях k, следует, что в установившемся состоянии синхронизма ошибка слежения за фазой имеет вид е(k)=αk/K+ν0/K-α/K2. А сигнал после входного переноса частоты будет иметь фазовый сдвиг ν0k+ϕ0-Kβk-C0, который устраняется в выходном умножителе 15.

Формула изобретения

Способ фазовой и тактовой синхронизации, основанный на использовании системы фазовой автоподстройки частоты 1-го порядка, состоящий из вычисления фазовой ошибки равной четырехкратной оценке фазы, развертывания фазовой ошибки, умножения фазовой ошибки на масштабирующий коэффициент, получении генератором обратной связи моногармонического комплексного сигнала с фазой равной по величине проинтегрированному значению развернутой и отмасштабированной фазы, перемножения входного сигнала с сигналом с выхода генератора обратной связи, отличающийся тем, что после перемножения осуществляется возведение результирующего сигнала в квадрат, перенос частоты полученного сигнала на половину частоты следования символов вверх для формирования первой компоненты и аналогичный перенос частоты вниз для формирования второй компоненты, фильтрация с помощью ФНЧ и перемножение обоих компонент для получения сигнала, содержащего четырехкратную оценку фазы, уменьшение частоты полученного сигнала в 4 раза, его комплексное сопряжение и перемножение с результирующим сигналом для получения сигнала с нулевым частотным и фазовым сдвигом.

Источники информации

1. I. АН [et al.] Doppler application in LEO satellite communication systems. Kluwer Academic Publisher, 2002. 121 p.

2. Патент RU №2233452, Способ извлечения информации о доплеровском сдвиге частоты несущей сигнала и устройство для его осуществления.

3. Банкет В.Л., Дорофеев В.М. Цифровые методы в спутниковой связи. -М.: Радио и связь, 1988. - 240 с.

4. Спилкер Дж. Цифровая спутниковая связь. Пер. с англ./Под ред. В. В. Маркова. - М.: Связь, 1979. - 592 с.

5. Э. Витерби. Принципы когерентной связи: пер. с англ. / под ред. Б. Р. Левина. М.: Сов. радио, 1966. 392 с.

Способ фазовой и тактовой синхронизации, основанный на использовании системы фазовой автоподстройки частоты 1-го порядка, состоящий из вычисления фазовой ошибки, равной четырехкратной оценке фазы, развертывания фазовой ошибки, умножения фазовой ошибки на масштабирующий коэффициент, получения генератором обратной связи моногармонического комплексного сигнала с фазой, равной по величине проинтегрированному значению развернутой и отмасштабированной фазы, перемножения входного сигнала с сигналом с выхода генератора обратной связи, отличающийся тем, что после перемножения осуществляют возведение результирующего сигнала в квадрат, переносят частоту полученного сигнала на половину частоты следования символов вверх для формирования первой компоненты и аналогично переносят частоту вниз для формирования второй компоненты, фильтруют с помощью ФНЧ и перемножают обе компоненты для получения сигнала, содержащего четырехкратную оценку фазы, уменьшают частоту полученного сигнала в 4 раза, осуществляют его комплексное сопряжение и перемножение с результирующим сигналом для получения сигнала с нулевым частотным и фазовым сдвигом.
Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией
Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией
Источник поступления информации: Роспатент

Показаны записи 61-70 из 70.
29.05.2020
№220.018.21ae

Привязной аэростат

Изобретение относится к области воздухоплавания. Привязной аэростат включает газонаполненную оболочку, аэродинамическую поверхность, выполненную из полотнищ, натянутых на каркас, хвостовые стабилизаторы, токопроводящие леера, привязные стропы и кабель-трос. Аэродинамическая поверхность...
Тип: Изобретение
Номер охранного документа: 0002722087
Дата охранного документа: 26.05.2020
30.05.2020
№220.018.2274

Устройство охлаждения универсального блока вертикальной тросовой антенны

Изобретение относится к вертикальным тросовым антеннам, носителями которых могут быть как аппараты с аэростатической, так и аэродинамической подъемной силой. Технический результат - повышение надежности работы тросовой антенны. Сущность заявленного изобретения в том, что при подаче...
Тип: Изобретение
Номер охранного документа: 0002722219
Дата охранного документа: 28.05.2020
31.05.2020
№220.018.2316

М-канальное частотно-селективное устройство

Изобретение относится к радиосвязи и может быть использовано в радиоприемных устройствах декаметрового дипазона волн. Технический результат - расширение арсенала технических средств в области частотно-селективных систем. М-канальное частотно-селективное устройство содержит общую шину (1) и...
Тип: Изобретение
Номер охранного документа: 0002722340
Дата охранного документа: 29.05.2020
24.07.2020
№220.018.3639

М-канальное частотно-селективное устройство

Изобретение относится к радиосвязи и может быть использовано в радиоприемных устройствах декаметрового диапазона волн, а именно к М-канальному частотно-селективному устройству. Устройство содержит общую шину и входную потенциальную клемму, а также частотно-селективную систему, включающую М...
Тип: Изобретение
Номер охранного документа: 0002727615
Дата охранного документа: 22.07.2020
12.04.2023
№223.018.46a2

Способ получения самоподдерживающихся тонких пленок

Изобретение может быть использовано при получении металлических тонких пленок вакуумным осаждением. Способ получения самоподдерживающихся тонких пленок основан на нанесении на подложку «жертвенного» слоя водорастворимой соли, нанесении на «жертвенный» слой тонкой пленки и растворении...
Тип: Изобретение
Номер охранного документа: 0002767034
Дата охранного документа: 16.03.2022
16.05.2023
№223.018.6049

Привод многофункционального блока высоковольтного переключателя

Изобретение относится к электротехнике, а именно к электроприводам поршневого контактора высоковольтного переключателя, и может быть использовано, например, в радиосвязи при переключении высоковольтных переключателей в контурных системах мощных передатчиков. Привод многофункционального блока...
Тип: Изобретение
Номер охранного документа: 0002749862
Дата охранного документа: 17.06.2021
06.06.2023
№223.018.78e8

Система для получения сжатого воздуха

Изобретение относится к энергетике и может быть использовано в качестве пневматического аккумулятора - накопителя сжатого воздуха. Система для получения сжатого воздуха содержит источник солнечной энергии, солнечные батареи, аккумуляторы, компрессор, один или несколько резервуаров, размещенных...
Тип: Изобретение
Номер охранного документа: 0002755858
Дата охранного документа: 22.09.2021
16.06.2023
№223.018.7b0a

Устройство для приема сигналов относительной фазовой телеграфии с повышенной помехоустойчивостью

Изобретение относится к электросвязи и может использоваться для приема двоичных данных методом относительной фазовой телеграфии (ОФТ). Технический результат - повышение помехоустойчивости приема сигналов ОФТ путем исправления ошибочно принятых информационных двоичных символов, для определения...
Тип: Изобретение
Номер охранного документа: 0002752003
Дата охранного документа: 21.07.2021
16.06.2023
№223.018.7b79

Способ определения скорости распространения фронта горения в реакционных многослойных нанопленках с эффектом самораспространяющегося высокотемпературного синтеза

Изобретение относится к области нанотехнологии материалов и может найти применение при изучении свойств реакционных многослойных материалов с эффектом самораспространяющегося высокотемпературного синтеза (СВС), в частности для определения скорости распространения фронта горения таких...
Тип: Изобретение
Номер охранного документа: 0002755637
Дата охранного документа: 17.09.2021
16.06.2023
№223.018.7d45

Магнетронная распылительная система

Изобретение относится к магнетронной распылительной системе и может быть использовано для получения покрытий из металлов, диэлектриков, полупроводников и т.п. в различных отраслях промышленности, в том числе в микроэлектронике. Магнетронная распылительная система состоит из вакуумной камеры,...
Тип: Изобретение
Номер охранного документа: 0002748443
Дата охранного документа: 25.05.2021
+ добавить свой РИД