×
12.08.2019
219.017.be37

Результат интеллектуальной деятельности: НИЗКОТЕМПЕРАТУРНАЯ КОНСИСТЕНТНАЯ СМАЗКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтехимической области, а конкретнее к смазкам, применяемым в узлах трения машин и механизмов, эксплуатируемых в условиях Крайнего Севера и Арктики. Предложена низкотемпературная консистентная смазка, включающая базовое масло и загуститель, которая в качестве загустителя содержит микрокристаллическую целлюлозу и органомодифицированную глину при следующем соотношении компонентов, мас. %: микрокристаллическая целлюлоза - 10-30, органомодифицированная глина - 10-30, базовое масло - остальное. Согласно предлагаемому изобретению в качестве базового масла используют сложный эфир с двумя или тремя сложноэфирными группами. Технический результат: получение низкотемпературной консистентной смазки на основе нетоксичных компонентов и, как следствие, ее высокая экологичность и безопасность, расширение температурного диапазона применения до (-50)°С - (+150)°С. 1 з.п. ф-лы, 1 табл.. 5 пр.

Изобретение относится к области нефтехимии и, более конкретно, к созданию многоцелевой низкотемпературной консистентной (пластичной) смазки на основе нетоксичных компонентов, и может быть использовано для работы узлов трения в диапазоне температур от минус 50 до плюс 150°С. Среди возможных областей применения низкотемпературной консистентной смазки следует указать широкий круг машин и механизмов, эксплуатируемых в условиях Арктики и Крайнего Севера, в том числе все виды транспорта, буровые установки, оборудование для переработки нефти и газа.

К известному техническому решению в области рецептур низкотемпературных консистентных смазок относится пластичная смазка для смазывания и герметизации запорной арматуры магистральных и газораспределительных станций (см. патент RU 2214449 С10М 161/00, опубл. 20.10.2003). Смазка содержит в своем составе (мас. %): стеариновая кислота - 12.0-18.0, гидроокись лития - 2.0-3.0, полимер - 0.4-8.0, графит - 0.5-5.0, диалкилдитиофосфат цинка, модифицированный бором - 0.1-1.0, целлюлоза - 0.5-5.0, дистиллятное масло с температурой застывания ниже минус 45°С -до 100. В качестве полимера используют полиизобутилен, бутандиен-стирольный термоэластопласт, этиленпропиленовый синтетический каучук или атактический полипропилен. Технический результат изобретения заключался в повышении герметизирующих свойств и улучшении смазочных свойств пластичной смазки благодаря расширению температурного интервала работоспособности от минус 60 до плюс 120°С, обеспечение экологической безопасности.

К недостаткам данного изобретения можно отнести использование в рецептуре синтетических полимеров, нефтяного масла и токсичного гидроксида лития, оказывающих негативное влияние на окружающую среду в случае неправильной утилизации пластичной смазки на их основе.

Наиболее близкой к изобретению является пластичная смазка на основе смеси маловязких полиальфаолефиновых углеводородов, пригодная для высокоскоростных радиально-упорных подшипников, для гироскопов и синхронных гиромоторов, работоспособная в интервале рабочих температур от минус 50°С до плюс 150°С и содержащая в своем составе (мас. %): ПАОМ-4 - 37.46-39.44, диоктилсебацинат - 37.46-39.44, триоктилфосфат - 22.08-24.08, загуститель - продукт взаимодействия октадециламина - 3.57, полиизоцианата - 3.47-3.89 и анилина - 1.18-1.32, фенил-альфа-нафтиламин (неозон А) - 0.45-0.55, трикрезилфосфат - 3.9-4.1.

Состав пластичной смазки готовят следующим образом.

1) Приготавливают раствор присадки неозона А в трикрезилфосфате при перемешивании и нагревании;

2) Готовят дисперсионную среду путем смешивания в варочном аппарате компонентов дисперсионной среды (полиальфаолефинового масла ПАОМ-4, диоктилсебацината и триоктилфосфата);

3) Готовят растворы полиизоцианата в полученной дисперсионной среде; растворы смеси октадециламина и анилина в дисперсионной среде;

4) Совмещают полученные растворы полиизоцианата и аминов;

5) Реакционную массу нагревают и выдерживают некоторое время при этой температуре, охлаждают и получают готовую пластичную смазку по изобретению (см. RU 2476588, кл. МПК С10М 169/06, опубл. 27.02.2013).

Недостатком данного изобретения является вхождение в состав смазки токсичных компонентов и сложный способ приготовления смазки.

Технической задачей данного предлагаемого изобретения является создание универсальной смазки многоцелевого назначения на основе базовых масел сложноэфирной природы, обладающих большим интервалом температур применения и хорошими смазывающими свойствами, в отсутствии токсичных компонентов.

Поставленная задача решается тем, что предложена низкотемпературная консистентная смазка, включающая базовое масло и загуститель, которая в качестве загустителя содержит микрокристаллическую целлюлозу и органомодифицированную глину, при следующем соотношении компонентов, мас. %:

Микрокристаллическая целлюлоза 10-30
Органомодифицированная глина 10-30
Базовое масло остальное.

В качестве базового масла смазка содержит сложный эфир с двумя или тремя сложноэфирными группами.

Предлагаемая смазка относится к смазке низкотемпературной водостойкой антифрикционной, предназначенной для смазывания узлов трения, работоспособной в интервале температур от -50°С до +150°С.

Базовое масло предлагаемой смазки представляет собой маслянистую жидкость с хорошей смазывающей способностью, удовлетворительными вязкостно-температурными характеристиками, малой испаряемостью и высокой температурой вспышки. Его молекулярная масса достаточно высока, чтобы избежать проблем летучести, а эфирные связи в молекулах обеспечивают хорошие растворяющие свойства. Разветвление в углеводородных фрагментах базового масла приводит к очень хорошим низкотемпературным характеристикам смазки (температура плавления лежит в диапазоне от -50 до -65°С).

Необходимым компонентом пластичных смазок является загуститель, позволяющий создавать достаточно устойчивые коллоидные композиции, проявляющие в зависимости от нагрузки свойства жидкости или твердого тела. В качестве дешевого и нетоксичного загустителя для получения пластичных смазок может быть целлюлоза и ее производные.

Недостатком целлюлозы как загустителя является агрегативная и седиментационная неустойчивость взвеси ее части в средах неполярной природы, к которым относятся базовые масла, в том числе сложноэфирной природы. Техническим решением проблемы неустойчивости частиц целлюлозы может быть их использование совместно с загустителями другой природы, устойчивыми в средах неполярных базовых масел. В данном изобретении в качестве одного из -загустителей используют такое нетоксичное соединение, как органомодифицированная глина, которую применяют совместно со вторым загустителем - микрокристаллической целлюлозой. В качестве органического модификатора в составе глины используют галогениды четырехзамещенного аммониевого основания (например, гексадецилтриметиламмоний бромид). Примерами доступных для приобретения органомодифицированных глин, являются глины марки Cloisite® - 10А, 20А, 6А, 15А, 30В или 25А, производства фирмы Southern Clay Products (США) и фирмы BYK-Chemie GmbH (Германия). Органомодифицированные глины доступны также под марками Somasif® и Lucentite® (производства СВС Japan Co. Ltd., Япония), Nanofil® и Optigel® (Stid-Chemie AG, Германия), Saponit® и Hektorit® (Hochst AG, Германия), Laponite® (Rockwood Holdings Inc., США) и Perkalite® (Akzo Nobel Chemicals B.V., Нидерланды). Нижеперечисленные примеры иллюстрируют техническое решение.

В качестве них рассмотрены смеси с различным содержанием целлюлозного загустителя и разной вязкостью базового масла. Повышение содержания загустителя позволяет получать более вязкие консистентные смазки, что актуально в случае их применения в области высоких температур, и, наоборот, использование меньшего содержания загустителя позволяет сохранять смазке приемлемую вязкость в условиях низких температур (примеры 1-3).

При этом вязкость базового масла в определении вязкости консистентной смазки роли не играет и использование предлагаемого технического решения для получения консистентных смазок возможно с использованием более высоковязкой масляной основы (пример 4).

Вязкостные свойства смазок возрастают не только с ростом содержания загустителя, но и с переходом к более полярному базовому маслу (полярность которого можно выразить через дипольный момент молекул), что позволяет использовать при применении таких более полярных базовых масел меньшее количество загустителя для достижения требуемого уровня вязкости консистентной смазки (пример 5).

Консистентные смазки можно охарактеризовать пределом прочности, температурами застывания и каплепадения, коллоидной стабильностью и способностью снижать диаметр пятна износа, трущихся стальных шаров. Во всех случаях смазки имеют низкую температуру застывания и высокую температуру каплепадения, что дает возможность их применения в широком температурном диапазоне, покрывающем, по меньшей мере, диапазон от (минус 50) до (плюс 150). Использование невысокого количества микрокристаллической целлюлозы (10-15%) в составе смазки позволяет придать ей умеренную прочность, тогда как большее содержание целлюлозы приводит к формированию крайне прочной пластичной структуры. Во всех случаях смазки характеризуются высокой коллоидной стабильностью и значительно снижают диметр пятна износа трущихся сферических поверхностей (диаметр пятна износа при использовании в качестве смазки базового масла, не содержащего загустители, составляет 0.72-0.85 мм).

Пример 1.

В 55 г базового масла - сложного эфира, содержащего две сложноэфирные группы (сложного эфира 2-этилгексанола и себациновой кислоты - диизооктилсебацината), вводят навеску, содержащую 25 г органомодифицированной глины (марки Cloisite® 20А).

Модификатором данной коммерчески доступной глины является хлорид четвертичного аммония, содержащего в качестве заместителей при атоме азота две метальные группы и две алкильные группы гидрированных жирных кислот, использованный в количестве 95 миллиэквивалентов модификатора на 100 г природной натриевой монтмориллонитовой глины.

Смесь перемешивают при 25°С на роторном смесителе в течение трех минут. Затем в полученную дисперсию органомодифицированной глины вводят 20 г микрокристаллической целлюлозы.

Таким образом, получают консистентную смазку со следующим соотношением компонентов (мас. %): базовое масло - 55, микрокристаллическая целлюлоза - 20, органомодифицированная глина - 25. Полученную систему перемешивают при 25°С на роторном смесителе в течение трех минут. Затем дают смеси отстояться в течение 24 часов.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 2.

Получение консистентной смазки, содержащей (мас. %): базовое масло (диизооктилсебацинат) - 60, органомодифицированная глина - 25, микрокристаллическая целлюлоза - 15, проводят аналогично описанному в примере 1.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 3.

Получение консистентной смазки, содержащей (мас. %): базовое масло (диизооктилсебацинат) - 50, органомодифицированная глина - 25, микрокристаллическая целлюлоза - 25, проводят аналогично описанному в примере 1.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 4.

Получение консистентной смазки проводят аналогично, указанному в примере 1, но используют в качестве базового масла сложный эфир, содержащий три сложноэфирные группы (сложный эфир энантовой кислоты и триметилолпропана - триметилолпропантригептаноат).

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 5.

Получение консистентной смазки проводят аналогично, указанному в примере 1, но используют в качестве базового масла - сложного эфира, содержащего две сложноэфирные группы, сложный эфир 7-метилоктан-1-ола и ортофталевой кислоты - диизононилфталат, и соотношение компонентов берут равным (мас. %): базовое масло - 70, органомодифицированная глина -20, микрокристаллическая целлюлоза - 10.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Таким образом, предложена многоцелевая низкотемпературная консистентная (пластичная) смазка на основе нетоксичных компонентов, и может быть использована для работы узлов трения в диапазоне температур от минус 50 до плюс 150°С.Среди возможных областей применения низкотемпературной консистентной смазки следует указать широкий круг машин и механизмов, эксплуатируемых в условиях Арктики и Крайнего Севера, в том числе все виды транспорта, буровые установки, оборудование для переработки нефти и газа.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 141.
10.05.2018
№218.016.4c27

Способ получения суспензии катализатора гидроконверсии тяжелого нефтяного сырья

Изобретение относится к области нефтепереработки и, более конкретно, к способам приготовления наноразмерных и ультрадисперсных катализаторов без носителя для гидрогенизационной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти, природных...
Тип: Изобретение
Номер охранного документа: 0002652122
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4c35

Способ получения глюкозочувствительных полимерных гидрогелей

Изобретение относится к области биохимии и медицины, к способу получения глюкозочувствительных полимерных гидрогелей, которые могут применяться в качестве носителей для контролируемого выделения инсулина при появлении глюкозы. Способ получения глюкозочувствительных полимерных гидрогелей...
Тип: Изобретение
Номер охранного документа: 0002652126
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4ccd

Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом

Изобретение относится к области композиционных мембран разделения газовых смесей и/или смеси газов и паров органических растворителей, и/или первапорации водно-органических или органических-органических смесей. Способ получения композиционной мембраны для газоразделения и первапорации включает...
Тип: Изобретение
Номер охранного документа: 0002652228
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4e60

Способ получения микро-мезопористого цеолита y и цеолит, полученный этим способом

Изобретение относится к неорганической химии, в частности к способам получения кристаллических цеолитных материалов, обладающих микро-мезопористой структурой и кислотными свойствами. Способ получения микро-мезопористого цеолита Y включает суспендирование и активацию деалюминированного цеолита Y...
Тип: Изобретение
Номер охранного документа: 0002650897
Дата охранного документа: 18.04.2018
09.06.2018
№218.016.5b72

Способ получения стирола из отходов полистирола

Изобретение относится к способу получения стирола из отходов полистирола, включающему растворение отходов полистирола в органическом растворителе, введение полученного раствора в реактор и разложение полистирола в отсутствие катализатора при повышенной температуре и атмосферном давлении. Способ...
Тип: Изобретение
Номер охранного документа: 0002655925
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5f20

Способ удаления диоксида углерода из газовых смесей

Изобретение относится к области очистки от диоксида углерода различных газовых смесей, таких как природный газ, газы конверсии углеводородов, дымовые газы и др. методом абсорбции. Способ удаления диоксида углерода из газовых смесей включает абсорбцию диоксида углерода водным раствором...
Тип: Изобретение
Номер охранного документа: 0002656661
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.6221

Способ получения высокоплотного реактивного топлива для сверхзвуковой авиации

Изобретение относится к способу получения высокоплотного реактивного топлива. Способ получения высокоплотного реактивного топлива для сверхзвуковой авиации осуществляют путем гидрирования фракций каменноугольной смолы при повышенных температуре и давлении в присутствии водорода и катализатора,...
Тип: Изобретение
Номер охранного документа: 0002657733
Дата охранного документа: 15.06.2018
26.07.2018
№218.016.74ae

Способ получения катализатора и способ получения этиллевулината с применением полученного катализатора

Изобретение относится к области получения эфиров путем каталитических превращений спиртов, а именно фурфурилового спирта, и может найти применение в парфюмерной промышленности, производстве моторных топлив и других областях, в которых применяют эфиры левулиновой кислоты. В способе получения...
Тип: Изобретение
Номер охранного документа: 0002662165
Дата охранного документа: 24.07.2018
09.08.2018
№218.016.79f8

Нанокомпозитный магнитный материал и способ его получения

Изобретение относится к области нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на углеродных нанотрубках. Нанокомпозитный магнитный материал включает полимер - полидифениламин-2-карбоновую кислоту (ПДФАК) и...
Тип: Изобретение
Номер охранного документа: 0002663049
Дата охранного документа: 01.08.2018
01.09.2018
№218.016.81b6

Гибридный электропроводящий материал на основе полимера и углеродных нанотрубок и способ его получения

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с...
Тип: Изобретение
Номер охранного документа: 0002665394
Дата охранного документа: 29.08.2018
Показаны записи 21-22 из 22.
12.04.2023
№223.018.444b

Растворитель и способ переработки поликетона и/или полиамида с его использованием (варианты)

Настоящее изобретение относится к растворителю для полиамида и/или поликетона, а также к способу переработки полимера путем растворения его в растворителе. Изобретение может быть использовано для получения полимерных пленок, мембран, волокон и других изделий для применения в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002738836
Дата охранного документа: 17.12.2020
15.05.2023
№223.018.5821

Способ получения кокса с пониженным содержанием серы (варианты)

Изобретение относится к области нефтепереработки и коксохимии, в частности, к области получения нефтяного кокса с пониженным содержанием серы путем предварительного окисления сернистых соединений, содержащихся в сырье для коксования, до соответствующих сульфонов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002768163
Дата охранного документа: 23.03.2022
+ добавить свой РИД