×
12.08.2019
219.017.be37

Результат интеллектуальной деятельности: НИЗКОТЕМПЕРАТУРНАЯ КОНСИСТЕНТНАЯ СМАЗКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтехимической области, а конкретнее к смазкам, применяемым в узлах трения машин и механизмов, эксплуатируемых в условиях Крайнего Севера и Арктики. Предложена низкотемпературная консистентная смазка, включающая базовое масло и загуститель, которая в качестве загустителя содержит микрокристаллическую целлюлозу и органомодифицированную глину при следующем соотношении компонентов, мас. %: микрокристаллическая целлюлоза - 10-30, органомодифицированная глина - 10-30, базовое масло - остальное. Согласно предлагаемому изобретению в качестве базового масла используют сложный эфир с двумя или тремя сложноэфирными группами. Технический результат: получение низкотемпературной консистентной смазки на основе нетоксичных компонентов и, как следствие, ее высокая экологичность и безопасность, расширение температурного диапазона применения до (-50)°С - (+150)°С. 1 з.п. ф-лы, 1 табл.. 5 пр.

Изобретение относится к области нефтехимии и, более конкретно, к созданию многоцелевой низкотемпературной консистентной (пластичной) смазки на основе нетоксичных компонентов, и может быть использовано для работы узлов трения в диапазоне температур от минус 50 до плюс 150°С. Среди возможных областей применения низкотемпературной консистентной смазки следует указать широкий круг машин и механизмов, эксплуатируемых в условиях Арктики и Крайнего Севера, в том числе все виды транспорта, буровые установки, оборудование для переработки нефти и газа.

К известному техническому решению в области рецептур низкотемпературных консистентных смазок относится пластичная смазка для смазывания и герметизации запорной арматуры магистральных и газораспределительных станций (см. патент RU 2214449 С10М 161/00, опубл. 20.10.2003). Смазка содержит в своем составе (мас. %): стеариновая кислота - 12.0-18.0, гидроокись лития - 2.0-3.0, полимер - 0.4-8.0, графит - 0.5-5.0, диалкилдитиофосфат цинка, модифицированный бором - 0.1-1.0, целлюлоза - 0.5-5.0, дистиллятное масло с температурой застывания ниже минус 45°С -до 100. В качестве полимера используют полиизобутилен, бутандиен-стирольный термоэластопласт, этиленпропиленовый синтетический каучук или атактический полипропилен. Технический результат изобретения заключался в повышении герметизирующих свойств и улучшении смазочных свойств пластичной смазки благодаря расширению температурного интервала работоспособности от минус 60 до плюс 120°С, обеспечение экологической безопасности.

К недостаткам данного изобретения можно отнести использование в рецептуре синтетических полимеров, нефтяного масла и токсичного гидроксида лития, оказывающих негативное влияние на окружающую среду в случае неправильной утилизации пластичной смазки на их основе.

Наиболее близкой к изобретению является пластичная смазка на основе смеси маловязких полиальфаолефиновых углеводородов, пригодная для высокоскоростных радиально-упорных подшипников, для гироскопов и синхронных гиромоторов, работоспособная в интервале рабочих температур от минус 50°С до плюс 150°С и содержащая в своем составе (мас. %): ПАОМ-4 - 37.46-39.44, диоктилсебацинат - 37.46-39.44, триоктилфосфат - 22.08-24.08, загуститель - продукт взаимодействия октадециламина - 3.57, полиизоцианата - 3.47-3.89 и анилина - 1.18-1.32, фенил-альфа-нафтиламин (неозон А) - 0.45-0.55, трикрезилфосфат - 3.9-4.1.

Состав пластичной смазки готовят следующим образом.

1) Приготавливают раствор присадки неозона А в трикрезилфосфате при перемешивании и нагревании;

2) Готовят дисперсионную среду путем смешивания в варочном аппарате компонентов дисперсионной среды (полиальфаолефинового масла ПАОМ-4, диоктилсебацината и триоктилфосфата);

3) Готовят растворы полиизоцианата в полученной дисперсионной среде; растворы смеси октадециламина и анилина в дисперсионной среде;

4) Совмещают полученные растворы полиизоцианата и аминов;

5) Реакционную массу нагревают и выдерживают некоторое время при этой температуре, охлаждают и получают готовую пластичную смазку по изобретению (см. RU 2476588, кл. МПК С10М 169/06, опубл. 27.02.2013).

Недостатком данного изобретения является вхождение в состав смазки токсичных компонентов и сложный способ приготовления смазки.

Технической задачей данного предлагаемого изобретения является создание универсальной смазки многоцелевого назначения на основе базовых масел сложноэфирной природы, обладающих большим интервалом температур применения и хорошими смазывающими свойствами, в отсутствии токсичных компонентов.

Поставленная задача решается тем, что предложена низкотемпературная консистентная смазка, включающая базовое масло и загуститель, которая в качестве загустителя содержит микрокристаллическую целлюлозу и органомодифицированную глину, при следующем соотношении компонентов, мас. %:

Микрокристаллическая целлюлоза 10-30
Органомодифицированная глина 10-30
Базовое масло остальное.

В качестве базового масла смазка содержит сложный эфир с двумя или тремя сложноэфирными группами.

Предлагаемая смазка относится к смазке низкотемпературной водостойкой антифрикционной, предназначенной для смазывания узлов трения, работоспособной в интервале температур от -50°С до +150°С.

Базовое масло предлагаемой смазки представляет собой маслянистую жидкость с хорошей смазывающей способностью, удовлетворительными вязкостно-температурными характеристиками, малой испаряемостью и высокой температурой вспышки. Его молекулярная масса достаточно высока, чтобы избежать проблем летучести, а эфирные связи в молекулах обеспечивают хорошие растворяющие свойства. Разветвление в углеводородных фрагментах базового масла приводит к очень хорошим низкотемпературным характеристикам смазки (температура плавления лежит в диапазоне от -50 до -65°С).

Необходимым компонентом пластичных смазок является загуститель, позволяющий создавать достаточно устойчивые коллоидные композиции, проявляющие в зависимости от нагрузки свойства жидкости или твердого тела. В качестве дешевого и нетоксичного загустителя для получения пластичных смазок может быть целлюлоза и ее производные.

Недостатком целлюлозы как загустителя является агрегативная и седиментационная неустойчивость взвеси ее части в средах неполярной природы, к которым относятся базовые масла, в том числе сложноэфирной природы. Техническим решением проблемы неустойчивости частиц целлюлозы может быть их использование совместно с загустителями другой природы, устойчивыми в средах неполярных базовых масел. В данном изобретении в качестве одного из -загустителей используют такое нетоксичное соединение, как органомодифицированная глина, которую применяют совместно со вторым загустителем - микрокристаллической целлюлозой. В качестве органического модификатора в составе глины используют галогениды четырехзамещенного аммониевого основания (например, гексадецилтриметиламмоний бромид). Примерами доступных для приобретения органомодифицированных глин, являются глины марки Cloisite® - 10А, 20А, 6А, 15А, 30В или 25А, производства фирмы Southern Clay Products (США) и фирмы BYK-Chemie GmbH (Германия). Органомодифицированные глины доступны также под марками Somasif® и Lucentite® (производства СВС Japan Co. Ltd., Япония), Nanofil® и Optigel® (Stid-Chemie AG, Германия), Saponit® и Hektorit® (Hochst AG, Германия), Laponite® (Rockwood Holdings Inc., США) и Perkalite® (Akzo Nobel Chemicals B.V., Нидерланды). Нижеперечисленные примеры иллюстрируют техническое решение.

В качестве них рассмотрены смеси с различным содержанием целлюлозного загустителя и разной вязкостью базового масла. Повышение содержания загустителя позволяет получать более вязкие консистентные смазки, что актуально в случае их применения в области высоких температур, и, наоборот, использование меньшего содержания загустителя позволяет сохранять смазке приемлемую вязкость в условиях низких температур (примеры 1-3).

При этом вязкость базового масла в определении вязкости консистентной смазки роли не играет и использование предлагаемого технического решения для получения консистентных смазок возможно с использованием более высоковязкой масляной основы (пример 4).

Вязкостные свойства смазок возрастают не только с ростом содержания загустителя, но и с переходом к более полярному базовому маслу (полярность которого можно выразить через дипольный момент молекул), что позволяет использовать при применении таких более полярных базовых масел меньшее количество загустителя для достижения требуемого уровня вязкости консистентной смазки (пример 5).

Консистентные смазки можно охарактеризовать пределом прочности, температурами застывания и каплепадения, коллоидной стабильностью и способностью снижать диаметр пятна износа, трущихся стальных шаров. Во всех случаях смазки имеют низкую температуру застывания и высокую температуру каплепадения, что дает возможность их применения в широком температурном диапазоне, покрывающем, по меньшей мере, диапазон от (минус 50) до (плюс 150). Использование невысокого количества микрокристаллической целлюлозы (10-15%) в составе смазки позволяет придать ей умеренную прочность, тогда как большее содержание целлюлозы приводит к формированию крайне прочной пластичной структуры. Во всех случаях смазки характеризуются высокой коллоидной стабильностью и значительно снижают диметр пятна износа трущихся сферических поверхностей (диаметр пятна износа при использовании в качестве смазки базового масла, не содержащего загустители, составляет 0.72-0.85 мм).

Пример 1.

В 55 г базового масла - сложного эфира, содержащего две сложноэфирные группы (сложного эфира 2-этилгексанола и себациновой кислоты - диизооктилсебацината), вводят навеску, содержащую 25 г органомодифицированной глины (марки Cloisite® 20А).

Модификатором данной коммерчески доступной глины является хлорид четвертичного аммония, содержащего в качестве заместителей при атоме азота две метальные группы и две алкильные группы гидрированных жирных кислот, использованный в количестве 95 миллиэквивалентов модификатора на 100 г природной натриевой монтмориллонитовой глины.

Смесь перемешивают при 25°С на роторном смесителе в течение трех минут. Затем в полученную дисперсию органомодифицированной глины вводят 20 г микрокристаллической целлюлозы.

Таким образом, получают консистентную смазку со следующим соотношением компонентов (мас. %): базовое масло - 55, микрокристаллическая целлюлоза - 20, органомодифицированная глина - 25. Полученную систему перемешивают при 25°С на роторном смесителе в течение трех минут. Затем дают смеси отстояться в течение 24 часов.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 2.

Получение консистентной смазки, содержащей (мас. %): базовое масло (диизооктилсебацинат) - 60, органомодифицированная глина - 25, микрокристаллическая целлюлоза - 15, проводят аналогично описанному в примере 1.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 3.

Получение консистентной смазки, содержащей (мас. %): базовое масло (диизооктилсебацинат) - 50, органомодифицированная глина - 25, микрокристаллическая целлюлоза - 25, проводят аналогично описанному в примере 1.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 4.

Получение консистентной смазки проводят аналогично, указанному в примере 1, но используют в качестве базового масла сложный эфир, содержащий три сложноэфирные группы (сложный эфир энантовой кислоты и триметилолпропана - триметилолпропантригептаноат).

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Пример 5.

Получение консистентной смазки проводят аналогично, указанному в примере 1, но используют в качестве базового масла - сложного эфира, содержащего две сложноэфирные группы, сложный эфир 7-метилоктан-1-ола и ортофталевой кислоты - диизононилфталат, и соотношение компонентов берут равным (мас. %): базовое масло - 70, органомодифицированная глина -20, микрокристаллическая целлюлоза - 10.

Полученная консистентная смазка характеризуется физико-механическими и трибологическими свойствами, приведенными в таблице.

Таким образом, предложена многоцелевая низкотемпературная консистентная (пластичная) смазка на основе нетоксичных компонентов, и может быть использована для работы узлов трения в диапазоне температур от минус 50 до плюс 150°С.Среди возможных областей применения низкотемпературной консистентной смазки следует указать широкий круг машин и механизмов, эксплуатируемых в условиях Арктики и Крайнего Севера, в том числе все виды транспорта, буровые установки, оборудование для переработки нефти и газа.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 141.
29.12.2017
№217.015.fe80

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в...
Тип: Изобретение
Номер охранного документа: 0002638350
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1452

Аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7, способ его получения и способ разделения газовых смесей с его применением

Изобретение относится к синтезу новых аддитивных сополимеров на основе трициклононенов и разделению газовых смесей с помощью мембран на основе этих сополимеров. Предложен аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7 формулы (I), где n и m –...
Тип: Изобретение
Номер охранного документа: 0002634724
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
10.05.2018
№218.016.4703

Способ измерения скорости циркуляции мелкодисперсного катализатора

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора,...
Тип: Изобретение
Номер охранного документа: 0002650623
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4c18

Способ получения винилиденовых олефинов

Изобретение относится к области промышленного получения ненасыщенных углеводородов с заданной структурой, а именно к способу получения винилиденовых олефинов. Способ включает димеризацию альфа-олефинов, таких как гексен-1, октен-1, децен-1, в присутствии продукта взаимодействия...
Тип: Изобретение
Номер охранного документа: 0002652118
Дата охранного документа: 25.04.2018
Показаны записи 21-22 из 22.
12.04.2023
№223.018.444b

Растворитель и способ переработки поликетона и/или полиамида с его использованием (варианты)

Настоящее изобретение относится к растворителю для полиамида и/или поликетона, а также к способу переработки полимера путем растворения его в растворителе. Изобретение может быть использовано для получения полимерных пленок, мембран, волокон и других изделий для применения в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002738836
Дата охранного документа: 17.12.2020
15.05.2023
№223.018.5821

Способ получения кокса с пониженным содержанием серы (варианты)

Изобретение относится к области нефтепереработки и коксохимии, в частности, к области получения нефтяного кокса с пониженным содержанием серы путем предварительного окисления сернистых соединений, содержащихся в сырье для коксования, до соответствующих сульфонов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002768163
Дата охранного документа: 23.03.2022
+ добавить свой РИД