×
12.08.2019
219.017.be36

Результат интеллектуальной деятельности: Способ измерения сопротивления изоляционного покрытия трубопровода

Вид РИД

Изобретение

Аннотация: Изобретение относится к электроизмерительной технике и может быть использовано для оценки сопротивления изоляционного покрытия подземных трубопроводов в процессе их электрометрического обследования. Для уменьшения продолжительности и трудоемкости трассовых работ при определении технического состояния изоляционного покрытия трубопровода предлагается в способе измерения сопротивления изоляционного покрытия трубопровода, основанном на измерении поляризационного потенциала трубопровода, измерение сопротивления изоляционного покрытия осуществить, отключив станции катодной защиты, подключив к двум входам устройства измерения первое разрядное сопротивление (R), и через заданное время разряда трубопровода (t) фиксируют измеренный поляризационный потенциал (U). Затем отключают от входов устройства измерения первое разрядное сопротивление и включают станции катодной защиты; после восстановления исходного значения поляризационного потенциала (U) вновь отключают станции катодной защиты и подключают к входам устройства измерения второе разрядное сопротивление (R), затем через заданное время разряда трубопровода (t) фиксируют измеренный потенциал (U) и определяют сопротивление изоляционного покрытия трубопровода по формуле: где , - исходный поляризационный потенциал. 2 ил.

Изобретение относится к электроизмерительной технике и может быть использовано для оценки сопротивления изоляционного покрытия подземных трубопроводов в процессе их электрометрического обследования.

Со временем в хорошо изолированных подземных стальных трубопроводах появляются участки с дефектами в защитном покрытии. Необходимо их своевременно обнаруживать и проводить ремонт трубопровода.

Известен способ оценки технического состояния изоляционного покрытия подземного трубопровода, заключающийся в определении естественной разности потенциалов «труба - земля»: для этого выбирают расположенный между точками дренажа двух соседних станций катодной защиты (СКЗ) участок трубопровода, на котором необходимо оценить состояние изоляционного покрытия (патент РФ №2626609, МПК F16L 58/00 (2006.01), C23F 13/00 (2006.01), опубл. 31.07.2017). Определяют марку стали труб, из которой выполнен трубопровод, и типы грунта на глубине залегания трубопровода. В лабораторных условиях последовательно измеряют значения естественной разности потенциалов «металл - грунт» при помощи образцов стали, марка которой идентична марке стали труб на контролируемом участке, помещенных в грунт, идентичный по типу грунту в месте прокладки трубопровода. Определяют разность потенциалов «труба - земля», значение силы тока на выходе СКЗ и смещение защитного потенциала. Значение силы поляризующего тока принимают равным по сумме значений силы тока на выходе каждой СКЗ. На основании полученных данных определяют сопротивление изоляции, по значению которого судят о техническом состоянии контролируемого участка трубопровода.

Недостатком способа является значительная трудоемкость, продолжительность предварительных лабораторных измерений, а также ограниченные возможности при необходимости оперативной оценки изоляционного покрытия трубопровода.

Известен способ определения сопротивления изоляционного покрытия трубопроводов, заключающийся в катодной поляризации исследуемого участка и определении состояния изоляционного покрытия по смещению поляризационного потенциала с омической составляющей при определенной расчетной силе поляризующего тока, вызывающего это смещение (ГОСТ Р 51164-98 Приложение Д.1 Метод контроля состояния изоляционного покрытия на законченных строительством участках трубопровода).

Недостатком данного способа является трудоемкость его применения на действующих трубопроводах, поскольку контролируемый участок должен быть электрически изолирован от других участков трубопровода.

Наиболее близким аналогом, принятым в качестве прототипа, является способ, заключающийся в отключении не менее чем за сутки до проведения измерений всех действующих на контролируемом участке станций катодной защиты, измерении естественной разности потенциалов «труба - земля» на контролируемом участке, включении одной станции катодной защиты, и по истечении двух-трех часов измеряют силу тока на выходе станции катодной зашиты и смещение потенциала трубопровода, затем рассчитывают переходное сопротивление изоляционного покрытия трубопровода, по значению которого судят о техническом состоянии изоляционного покрытия трубопровода (ГОСТ Р 51164-98 Приложение Д.2 Метод контроля состояния изоляционного покрытия при эксплуатации).

Недостатком данного способа является значительная продолжительность трассовых работ: отключение не менее чем на сутки действующих на контролируемом участке трубопровода станций катодной защиты с последующим включением одной станции катодной защиты и измерении по истечении двух-трех часов силы тока на выходе станции катодной защиты и смещения потенциала трубопровода.

Техническим результатом заявляемого изобретения является уменьшение продолжительности и трудоемкости трассовых работ при определении технического состояния изоляционного покрытия трубопровода.

Технический результат достигается тем, что предлагаемый способ измерения сопротивления изоляционного покрытия трубопроводов основан на измерении поляризационного потенциала трубопровода относительно потенциала электрода сравнения, расположенного на поверхности грунта над осью трубопровода на контролируемом участке и пунктом измерения, ограниченном точками дренажа двух соседних станций катодной защиты, работающих в режиме «включено - выключено». Для этого отключают станции катодной защиты, затем подключают к двум входам устройства измерения первое разрядное сопротивление (R1) и через заданное время разряда трубопровода (t) фиксируют измеренный поляризационный потенциал (U1), далее отключают от входов устройства измерения первое разрядное сопротивление (R1) и включают станции катодной защиты; после восстановления исходного значения поляризационного потенциала (U0) вновь отключают станции катодной защиты и подключают к входам устройства измерения второе разрядное сопротивление (R2), затем через заданное время разряда трубопровода (t) фиксируют измеренный потенциал (U2) и определяют сопротивление изоляционного покрытия трубопровода по формуле:

где U0 - исходный поляризационный потенциал.

Таким образом, предлагаемый способ при измерении сопротивления изоляционного покрытия трубопровода решает проблему исключения продолжительной по времени (не менее одних суток) деполяризации трубопровода до естественной разности потенциалов «труба - земля» и последующей в течение нескольких часов полной поляризации трубопровода.

На фиг. 1 представлена функциональная схема устройства для реализации способа измерения сопротивления изоляционного покрытия трубопровода; на фиг. 2 - подключение устройства измерения к стальному трубопроводу.

Устройства измерения сопротивления изоляционного покрытия трубопровода 1 содержит резистивную электрическую цепь, состоящую из первого разрядного сопротивления 2 (R1) и электронного ключа 3, и второго разрядного сопротивления 4 (R2) и электронного ключа 5, управляющие входы электронных ключей 3, 5 подключены к микроконтроллеру 6, выход которого подключен к регистрирующему устройству 7, а аналого-цифровой вход микроконтроллера 6 подключен к выходу дифференциального усилителя 8, инвертирующий вход которого подключен к разрядным сопротивлениям 2 и 4 и входу 9 устройства измерения 1, а к неинвертирующему входу дифференциального усилителя 8 подключены вход 10 устройства измерения 1 и электронные ключи 3 и 5.

Подключение устройства измерения 1 к трубопроводу 11 происходит следующим образом.

Трубопровод 11 гальванически соединен с пунктом измерения 12, который подключен к входу 10 устройства измерения 1, а электрод сравнения 13 подключен гальванически к входу 9 устройства измерения 1. Таким образом, между пунктом измерения 12 и электродом сравнения 13 гальванически включена резистивная электрическая цепь устройства измерения 1, состоящая из электронного ключа 3 и первого разрядного сопротивления 2 и электронного ключа 5 и второго разрядного сопротивления 4. Станция катодной защиты 14, отрицательным потенциалом соединенная через управляемый переключатель тока 15 с трубопроводом 11, а положительным потенциалом - с анодным заземлением 16, заглубленным в грунт 17. Станция катодной защиты 18 соединена отрицательным потенциалом через управляемый переключатель тока 19 с трубопроводом 11, а положительным потенциалом - с анодным заземлением 20, заглубленным в грунт 17.

Поскольку поверхность «труба - земля» из-за образования вдоль границы двойного слоя заряженных частиц можно представить как электролитический конденсатор, то осуществление управляемого разряда трубопровода через разрядное сопротивление при фиксированном времени разряда t и постоянной времени τ=RC, имеющие два значения, определяемых значениями двух подключаемых разрядных сопротивлений R1 и R2, с последующим решением двух уравнений разряда электролитического конденсатора, можно определить абсолютное значение сопротивления изоляционного покрытия трубопровода 11.

Измерение сопротивления изоляционного покрытия трубопровода 11 производится между пунктом измерения 12 и электродом сравнения 13, расположенных на поверхности грунта над осью трубопровода на контролируемом участке трубопровода, который должен быть оборудован в соответствии с ГОСТ Р 51164-98 станциями катодной защиты 14, 18 с соответствующими устройствами подключениями к трубопроводу 11 и грунту 17: управляемые переключатели тока 15, 19 и анодными заземлениями 16, 20.

Способ измерения сопротивления изоляционного покрытия трубопровода 11 устройством измерения 1 включает отключение станций катодной защиты 14 и 18, и через временную задержку, задаваемую микроконтроллером 6 в диапазоне 50÷10,0 мксек, измерение микроконтроллером 6 поляризационного потенциала U0 трубопровода 11 через дифференциальный усилитель 8, который фиксируют на регистрирующем устройстве 7.

Далее с помощью электронного ключа 3 подключают разрядное сопротивление 2 (R1) к входам 10, 9 устройства измерения 1 и через время разряда t, задаваемое микроконтроллером 6, измеряют микроконтроллером 6 поляризационный потенциал U1 трубопровода 11 через дифференциальный усилитель 8 и фиксируют на регистрирующем устройстве 7:

где

Далее отключают первое разрядное сопротивление 2 от входов 10 и 9 устройства измерения 1 и подключают станции катодной защиты 14 и 18, после восстановления исходного значения поляризационного потенциала U0, вновь отключают станции катодной защиты 14 и 18 и подключают к входам 10, 9 устройства измерения 1 с помощью электронного ключа 5 разрядное сопротивление 4 (R2). Через время разряда t, задаваемое микроконтроллером 6, измеряют микроконтроллером 6 поляризационный потенциал U2 трубопровода 11 через дифференциальный усилитель 8 и фиксируют на регистрирующем устройстве 7:

где

Решая уравнения (1) и (2) относительно t получаем

Приравнивая выражения (3) и (4), определяем сопротивления изоляционного покрытия трубопровода Rизм

где

Последовательно повторяя подключение и отключение первого и второго разрядных сопротивлений 2 и 4 соответственно, проводят несколько измерений сопротивления изоляционного покрытия трубопровода 11, что позволяет применить процедуру усреднения по формуле (6) и тем самым повысить точность измерения сопротивления изоляционного покрытия трубопровода 11.

Использование предлагаемого способа в системах электрометрического контроля трубопроводов позволяет проводить экспресс-контроль изоляционного покрытия трубопровода 11 без вмешательства в технологический процесс его функционирования с возможностью измерения сопротивления изоляционного покрытия в произвольно выбранной точке трассы трубопровода 11.

Таким образом, в предлагаемом изобретении, в отличие от прототипа, отсутствует процедура полной деполяризации трубопровода 11 до естественной разности потенциалов «труба - земля». Она заменена на процедуру двухтактного управляемого разряда поляризационного потенциала трубопровода. По продолжительности эта процедура протекает в течение нескольких десятков секунд, что является измерением в реальном времени. Вот почему, в отличие от прототипа, предлагаемый способ позволяет значительно сократить продолжительность измерительного процесса при сохранении необходимой точности измерения сопротивления изоляционного покрытия в выбранной точке трассы трубопровода 11.

Следовательно, предлагаемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо, т.е. удовлетворяет критериям, предъявляемым к изобретениям.


Способ измерения сопротивления изоляционного покрытия трубопровода
Способ измерения сопротивления изоляционного покрытия трубопровода
Способ измерения сопротивления изоляционного покрытия трубопровода
Способ измерения сопротивления изоляционного покрытия трубопровода
Способ измерения сопротивления изоляционного покрытия трубопровода
Способ измерения сопротивления изоляционного покрытия трубопровода
Способ измерения сопротивления изоляционного покрытия трубопровода
Способ измерения сопротивления изоляционного покрытия трубопровода
Источник поступления информации: Роспатент

Показаны записи 51-57 из 57.
10.05.2023
№223.018.533c

(2e,2'e)-2,2'-(1,2,4-тиадиазол-3,5-диил)бис(3-(4-хлорфенил)акрилонитрил) в качестве антидота 2,4-д на подсолнечнике

Изобретение относится к новым синтетическим, химическим биологически активным веществам из ряда гетероциклических соединений, применяемым для защиты растений подсолнечника. (2E,2'E)-2,2'-(1,2,4-тиадиазол-3,5-диил)бис(3-(4-хлорфенил)акрилонитрил) является антидотом к 2,4-дихлорфеноксиуксусной...
Тип: Изобретение
Номер охранного документа: 0002795307
Дата охранного документа: 02.05.2023
21.05.2023
№223.018.6884

Применение спиртового экстракта березового гриба чага в качестве ростстимулирующего средства для томатов

Изобретение относится к сельскому хозяйству. Предложено применение водно-спиртового экстракта с концентрацией 75% сухого остатка березового гриба чага FUNGUS BETULINUS в качестве рострегулирующего средства для томатов в концентрации 10-50 г/л с нормой расхода рабочего раствора 300 л/га....
Тип: Изобретение
Номер охранного документа: 0002794783
Дата охранного документа: 25.04.2023
23.05.2023
№223.018.6c1f

Способ модификации микрослюды и ее применение для создания композитных материалов

Изобретение относится к технологии получения модифицированных дисперсных наполнителей, используемых при создании лакокрасочных и композитных материалов. Описан способ химической модифиции микрослюды с ковалентной иммобилизацией функциональных групп. Микрослюду обрабатывают раствором...
Тип: Изобретение
Номер охранного документа: 0002736934
Дата охранного документа: 23.11.2020
23.05.2023
№223.018.6d3d

Способ получения 1,3-диоксациклоалкилсодержащих азоокисей

Изобретение относится к способам получения органических соединений, а именно к способу получения 1,3-диоксациклоалкилсодержащих азоокисей указанной ниже общей формулы. Способ заключается в восстановлении нитроарил-1,3-диоксациклоалканов общей формулы под действием 200 мол.% глюкозы в...
Тип: Изобретение
Номер охранного документа: 0002767880
Дата охранного документа: 22.03.2022
23.05.2023
№223.018.6d84

Способ определения концентрации привитых аминогрупп на поверхности минеральных наполнителей

Изобретение относится к аналитической химии, а именно к определению концентрации привитых аминогрупп на поверхности минеральных наполнителей, что может быть использовано при производстве композиционных материалов, модифицированных минеральных наполнителей и различных сорбентов на их основе....
Тип: Изобретение
Номер охранного документа: 0002761067
Дата охранного документа: 02.12.2021
23.05.2023
№223.018.6e36

Способ повышения продуктивности микроорганизмов в средах с детерминированным изотопным составом

Изобретение относится к области биотехнологии. Предложен способ повышения продуктивности микроорганизмов в среде с заданным изотопным составом. Способ включает подготовку суспензии микроорганизмов и её перемешивание в присутствии стабильных изотопов в процессе культивирования. Причем...
Тип: Изобретение
Номер охранного документа: 0002756473
Дата охранного документа: 30.09.2021
23.05.2023
№223.018.6f04

Дезинфицирующее средство для защиты строительных материалов от биоповреждений

Изобретение относится к биоцидам, а именно к химическим средствам защиты различных строительных материалов, использующихся при отделочных работах, от повреждений микроскопическими грибами и бактериями и от развития плесеней на поверхности материалов. Для обеспечения высокого фунгицидного и...
Тип: Изобретение
Номер охранного документа: 0002740197
Дата охранного документа: 12.01.2021
Показаны записи 1-7 из 7.
20.05.2013
№216.012.4233

Трассопоисковый приемник

Изобретение относится к электроизмерительной технике, и может быть использовано для генерирования гармонических сигналов в составе измерительного комплекса для реализации индукционного метода поиска и диагностики подземных коммуникаций. Трассопоисковый приемник состоит из последовательно...
Тип: Изобретение
Номер охранного документа: 0002482517
Дата охранного документа: 20.05.2013
20.08.2013
№216.012.61c4

Измеритель фазовых погрешностей масштабного преобразователя

Изобретение относится к измерительной технике и может быть использовано для определения фазовых погрешностей масштабных преобразователей, предназначенных для работы в широком частотном и динамическом диапазонах входных сигналов. Предлагаемый измеритель фазовых погрешностей состоит из...
Тип: Изобретение
Номер охранного документа: 0002490660
Дата охранного документа: 20.08.2013
27.12.2013
№216.012.91d1

Измеритель фазоамплитудных характеристик преобразователя частоты

Измеритель фазоамплитудных характеристик преобразователя частоты предназначен для определения фазовой погрешности преобразователей частоты, предназначенных для работы в широком динамическом диапазоне входных сигналов. Измеритель состоит из последовательно соединенных управляемого источника...
Тип: Изобретение
Номер охранного документа: 0002503022
Дата охранного документа: 27.12.2013
27.03.2016
№216.014.c823

Способ лечения послеоперационных переломов костей и посттравматических повреждений мягких тканей

Изобретение относится к медицине, а именно к способам лечения послеоперационных переломов костей и посттравматических повреждений мягких тканей. Воздействуют на пораженную зону токами высокой частоты и магнитным полем. При этом к обкладке конденсатора терапевтического контура токов высокой...
Тип: Изобретение
Номер охранного документа: 0002578357
Дата охранного документа: 27.03.2016
04.04.2018
№218.016.324a

Способ измерения поляризационного потенциала стальных трубопроводов

Изобретение относится к электроизмерительной технике и может быть использовано для оценки поляризационного потенциала подземных трубопроводов в процессе их электрометрического обследования. Сущность заявленного технического решения заключается в том, что предлагается в способе измерения...
Тип: Изобретение
Номер охранного документа: 0002645424
Дата охранного документа: 21.02.2018
10.05.2019
№219.017.5176

Измерительный комплекс для поиска и диагностики подземных коммуникаций

Изобретение относится к электроизмерительной технике и может быть использовано для оценки фактического положения и состояния подземных коммуникаций. Технический результат: повышение надежности и достоверности диагностики подземных коммуникаций. Сущность: измерительный комплекс состоит из...
Тип: Изобретение
Номер охранного документа: 0002687236
Дата охранного документа: 08.05.2019
15.04.2020
№220.018.14b7

Способ диагностики дефектов изоляционного покрытия трубопроводов

Изобретение относится к электроизмерительной технике и может быть использовано для оценки фактического положения и состояния подземных коммуникаций. Для повышения точности идентификации мест повреждения в изоляционном покрытии трубопровода предлагается контактный способ измерения градиентов...
Тип: Изобретение
Номер охранного документа: 0002718711
Дата охранного документа: 14.04.2020
+ добавить свой РИД