×
10.08.2019
219.017.bdf2

Результат интеллектуальной деятельности: Аэродинамическая труба

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний. Аэродинамическая труба содержит эжектор, который состоит из трех стволов, из которых как минимум один содержит перфорированное сопло. Система управления эжектором, выполненная с возможностью включать стволы независимо друг от друга, содержит дроссели и затворы, перфорация в сопле эжектора выполнена в виде продольных щелей. Технический результат заключается в снижении расходов высоконапорного газа на менее напряженных режимах работы аэродинамической трубы. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при разработке аэродинамических труб и проведении в них испытаний.

Известны аэродинамические трубы, в которых перепад давлений на рабочем сопле трубы создается с помощью эжектора либо компрессора и эжектора одновременно. (См. И. Гошек. «Аэродинамика больших скоростей», Изд. иностранной литературы. М. 1954). Контур гиперзвуковой аэродинамической трубы (источник газа, подогреватель, сопло, рабочая часть, диффузор и иногда охладитель потока) обычно заканчивается входом в выхлопную систему (входом в вакуумную емкость, эксгаустер или эжектор).

Эжекторные аэродинамические трубы (АДТ) имеют ряд преимуществ перед трубами с вакуумной емкостью и эксгаустером, особенно при испытаниях моделей с работающими двигателями. Эжектор должен обеспечивать реализацию всех режимов и одновременно не завышать стоимость испытаний, поскольку он является основным источником энергозатрат при них. Мощный эжектор позволяет реализовать в АДТ широкий диапазон чисел Маха, Рейнольдса и скоростных напоров, а также увеличить размер испытываемых моделей. С его помощью осуществляются мягкий запуск трубы и мягкий сход с режима, в результате чего не разрушаются (при прохождении скачков уплотнения) испытываемые модели, модельные державки, модельные весы и другое оборудование.

Известна аэродинамическая труба включающая сопло, рабочую часть, диффузор и многоступенчатый эжектор, принятая за прототип (см. Г.С. Бюшгенс, Е.Л. Бедржицкий. ЦАГИ - центр авиационной науки. Москва, «Наука», 1993, стр. 218).

Недостатком данного технического решения является повышенная стоимость испытаний из-за большого расхода сжатого воздуха из газгольдеров при работе в широком диапазоне режимов.

Необходимый расход сжатого воздуха через эжектор определяется его максимальной потребной степенью сжатия и поперечным размером камеры смешения. Он должен быть по экономическим соображениям близок к размеру горла диффузора трубы. Однако для разных режимов гиперзвуковой аэродинамической трубы размер горла диффузора меняется порой в несколько раз. Эжектор, выбранный для реализации наиболее напряженных режимов работы трубы, на остальных режимах оказывается переразмеренным и неэкономичным. Требования к эжектору становятся еще более противоречивыми при наличии охладителя рабочего потока, значительно уменьшающего объемный расход отсасываемого газа перед эжектором за счет снижения его температуры. Для реализации рабочих режимов в гиперзвуковых аэродинамических трубах применяются, как правило, многоступенчатые эжекторы, обеспечивающие необходимую большую (10-50) степень сжатия. Фактически требуется регулируемый по поперечному размеру многоступенчатый эжектор, но регулирование по поперечному размеру такого эжектора слишком сложная и технически трудноразрешимая задача.

Задачей и техническим результатом настоящего изобретения является создание аэродинамической трубы с эжектором, позволяющим экономить сжатый воздух на всех менее напряженных режимах, а, следовательно, минимизировать стоимость проведения испытаний.

Решение задачи и технический результат достигаются тем, что в аэродинамической трубе, включающей эжектор и систему его управления, эжектор состоит из нескольких стволов, из которых как минимум один содержит перфорированное сопло, а система управления выполнена с возможностью включать отдельно стволы независимо друг от друга. Кроме того, перфорация в сопле эжектора выполнена в виде продольных щелей, а система управления эжектором содержит дроссели и затворы в трассах подвода высоконапорного и низконапорного газов

Фиг. 1 Схема гиперзвуковой аэродинамической трубы с трехствольным эжектором.

Фиг. 2 Схема перфорированного продольными щелями сопла эжектора.

Фиг. 3 Характеристики трехствольного эжектора.

Фиг. 4 Общий вид гиперзвуковой аэродинамической трубы с трехствольным эжектором.

Схема предлагаемой аэродинамической трубы приведена на фиг. 1. Труба содержит воздухоподогреватель с форкамерой 1, аэродинамическое сопло 2, модель летательного аппарата 3, рабочую камеру 4, сверхзвуковой диффузор 5, внутренний диффузор 6, дозвуковой диффузор трубы 7, воздухоохладитель 8, многоствольный эжектор 9. В состав многоствольного эжектора 9 входят стволы (в нашем случае 3 ствола) с подводом сжатого воздуха 10, диффузор 11, шахта шумоглушения 12, затвор 13, дроссель высоконапорного газа 14. Каждый ствол эжектора содержит перфорированное продольными щелями сопло 15, обеспечивающее стволу степень сжатия многоступенчатого эжектора. Перфорированное продольными щелями сопло изображено на фиг. 2.

Двуединая задача реализации всех режимов работы аэродинамической трубы при минимальной стоимости испытаний в предложении решается устройством эжектора АДТ в виде ряда параллельных стволов с перфорированными соплами. Стволы в нужном количестве подключаются для каждого пуска в различных комбинациях. Для реализации различных комбинаций стволы имеют индивидуальный подвод высоконапорного газа 14 и затворы 13 для предотвращения натекания атмосферного воздуха в трубу через неработающий ствол (когда в него не подается высоконапорный газ). В качестве стволов применен модернизированный одноступенчатый эжектор с перфорированным продольными щелями соплом, позволяющий получать большие степени сжатия (примерно 10-50), сравнимые со степенями сжатия многоступенчатых эжекторов

На фиг. 3 приведены характеристики трехствольного эжектора, состоящего из одного большого и двух малых эжекторов, имеющих перфорированные продольными щелями сопла по фиг. 2. Характеристики (зависимости расхода отсасываемого газа от его абсолютного давления) рассчитаны при работе одного малого эжектора - линия 1, одного большого эжектора - линия 2, одновременной работе большого и одного малого эжекторов - линия 3 и одновременной работе большого и двух малых эжекторов - линия 4. При этом на линии 2 расход сжатого высоконапорного газа в два раза больше, чем на линии 1, на линии 3 - в 3, а на линии 4 - в 4 раза больше, чем на линии 1. Такая многоствольная конструкция эжектора позволяет рационально и экономично вести испытания в аэродинамической трубе. Стволы в нужном количестве (один, два или три) подключаются для каждого пуска трубы в различных комбинациях.

Как видим из фиг. 3, если бы эжектор был одноствольным и рассчитан на максимальный режим и максимальный расход отсасываемого и высоконапорного газа (см. линия 4), то на ненапряженных режимах работы трубы перерасход сжатого воздуха мог бы составлять 100-300%. Сравнение проведено с минимально необходимыми затратами сжатого воздуха на работу отсасывающего устройства аэродинамической трубы (линии 3, 2 и 1 на фиг. 3).

На фиг. 4 приведен общий вид разрабатываемой в настоящее время аэродинамической трубы с трехствольным эжектором, позволяющим в 2-3 раза снизить расходы высоконапорного газа на менее напряженных режимах работы аэродинамической трубы.


Аэродинамическая труба
Аэродинамическая труба
Аэродинамическая труба
Источник поступления информации: Роспатент

Показаны записи 231-240 из 255.
27.03.2020
№220.018.10ad

Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах (АДТ) и может быть использовано при исследовании нестационарных аэродинамических характеристик моделей летательных аппаратов в АДТ. Предложено устройство для исследования...
Тип: Изобретение
Номер охранного документа: 0002717748
Дата охранного документа: 25.03.2020
27.03.2020
№220.018.10e0

Способ прочностных испытаний натурных конструкций

Изобретение относится к технике прочностных испытаний натурных конструкций, в частности к способам двух известных видов испытаний, один из которых испытания на статическую прочность, а другой испытания на усталость, которые проводят на двух идентичных полноразмерных конструкциях. В процессе...
Тип: Изобретение
Номер охранного документа: 0002717750
Дата охранного документа: 25.03.2020
28.03.2020
№220.018.117e

Дымогенератор

Изобретение относится к области малогабаритных струйных генераторов дыма. Дымогенератор содержит испаритель с выходным отверстием для дыма, емкость с дымообразующей жидкостью, устройство подачи дымообразующей жидкости в испаритель, электрический источник питания, датчик контроля температуры...
Тип: Изобретение
Номер охранного документа: 0002717907
Дата охранного документа: 26.03.2020
04.06.2020
№220.018.23d2

Способ торможения летательного аппарата при посадке

Способ торможения летательного аппарата при посадке заключается в создании реактивным тормозным устройством тормозящей силы, направленной в заднюю полусферу против движения летательного аппарата, с помощью твердотопливных или пороховых зарядов, действие которых направлено вперед и вверх под...
Тип: Изобретение
Номер охранного документа: 0002722597
Дата охранного документа: 02.06.2020
04.06.2020
№220.018.23db

Двухтопливный летательный аппарат

Изобретение относится к авиационной технике. Двухтопливный летательный аппарат включает в себя фюзеляж (1), силовую установку (2), подъемно-маршевую систему. Летальный аппарат также содержит топливную систему с основным баком (3) для сжиженного газа и дополнительным баком (4) для жидкого...
Тип: Изобретение
Номер охранного документа: 0002722660
Дата охранного документа: 02.06.2020
07.06.2020
№220.018.24ac

Устройство формирования вихревого обтекания аэродинамической модели

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов и может быть использовано при проектировании, изготовлении и испытаниях в аэродинамических трубах аэродинамических моделей различного назначения. Устройство содержит посадочный элемент в виде втулки, встроенный...
Тип: Изобретение
Номер охранного документа: 0002722963
Дата охранного документа: 05.06.2020
07.06.2020
№220.018.24f4

Способ управления положением модели в аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики, в частности к автоматическим системам управления положением модели в аэродинамических трубах. Способ включает размещение модели на державке с возможностью изменения положения модели в набегающем потоке в одной плоскости по заданной...
Тип: Изобретение
Номер охранного документа: 0002722854
Дата охранного документа: 04.06.2020
07.06.2020
№220.018.24fe

Стенд для измерения аэродинамических характеристик модели отсека крыла

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для измерений аэродинамических характеристик моделей отсеков крыльев, преимущественно, при дозвуковых скоростях. Стенд включает аэродинамическую трубу с открытой рабочей частью, подвеску для крепления...
Тип: Изобретение
Номер охранного документа: 0002722856
Дата охранного документа: 04.06.2020
07.06.2020
№220.018.2563

Способ определения погрешности стенда для измерения характеристик геометрии масс изделий и устройство для его осуществления

Изобретение относится к области измерительной техники и может быть использовано для подтверждения метрологических характеристик при поверке, калибровке, испытаниях в целях утверждения типа стендов для измерения характеристик геометрии масс изделий с помощью статической балансировки,...
Тип: Изобретение
Номер охранного документа: 0002722962
Дата охранного документа: 05.06.2020
09.06.2020
№220.018.25ba

Конвертируемый летательный аппарат

Изобретение относится к авиационной технике, в частности к конструкциям летательных аппаратов вертикального взлета и посадки. Конвертируемый летательный аппарат содержит фюзеляж, хвостовое оперение, крыло, маршевую силовую установку с воздушными винтами, установленными на крыле. Подъемные ВМГ...
Тип: Изобретение
Номер охранного документа: 0002723104
Дата охранного документа: 08.06.2020
Показаны записи 1-3 из 3.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
10.04.2015
№216.013.3e71

Рабочая часть аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. Рабочая часть аэродинамической трубы включает камеру давления, перфорированные стенки на границах потока и шумоглушащие сетки. При этом...
Тип: Изобретение
Номер охранного документа: 0002547473
Дата охранного документа: 10.04.2015
11.03.2019
№219.016.d862

Рабочая часть трансзвуковой аэродинамической трубы (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке...
Тип: Изобретение
Номер охранного документа: 0002393449
Дата охранного документа: 27.06.2010
+ добавить свой РИД