×
10.08.2019
219.017.bd86

Результат интеллектуальной деятельности: МАТЕРИАЛ ПРИРАБАТЫВАЕМОГО УПЛОТНЕНИЯ ТУРБОМАШИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к материалам прирабатываемого уплотнения турбомашины. Материал содержит частицы порошкового наполнителя с размерами частиц порошка от 30 мкм до 100 мкм и порошковой добавки, адгезионно соединенные между собой в монолитный материал. В качестве материала наполнителя использован сплав состава: Сr - от 12,0 до 14,0 вес.%, Мо - от 1,5 до 2,5 вес.%, Ti - 0,08 вес.%, С - 0,08 вес.%, Si - 0,10 вес.%, Mg - 0,20 вес.%, Fe - остальное. В качестве порошковой добавки использованы 4-5 вес.% гексагонального нитрида бора, 0,8-1,2 вес.% бария сернокислого и 0,8-1,8 вес.% стеарата цинка. Порошок гексагонального нитрида бора имеет размеры частиц от 30 мкм до 100 мкм, барий сернокислый - от 20 мкм до 100 мкм, а стеарат цинка - от 20 мкм до 100 мкм. Обеспечивается высокая прирабатываемость, механическая прочности и износостойкость материала уплотнения. 1 пр.

Изобретение относится к машиностроению, в частности к материалам уплотнений зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Эффективность работы газотурбинных двигателей и установок, а также паровых турбин зависит от герметичности уплотнения между вращающимися лопатками и внутренней поверхностью корпуса в вентиляторе, компрессоре и турбине. Одним из основных видов подобных уплотнений являются истираемые уплотнения, герметичность которых обеспечивается за счет прорезания выступами на торцах лопаток канавок в истираемом уплотнительном материале. Материалы для уплотнения турбин выполняют, например, используя плетеные металлические волокна, соты [патент США №5080934, МПК F01D 11/08, 427/271, 1991] или спеченные металлические частицы. Приработка этих материалов происходит за счет его высокой пористости и его низкой прочности. Последнее обуславливает невысокую эрозионную стойкость уплотнительных материалов, что приводит к быстрому износу уплотнения. В качестве прирабатываемых уплотнений в современных двигателях и установках используют также газотермические покрытия, имеющие, по сравнению с вышеописанными материалами, меньшую трудоемкость изготовления.

Известен материал прирабатываемого уплотнения турбомашины [патент США №4291089], получаемый методом газотермического напыления порошкового материала. При этом материал уплотнения формируется в виде покрытия, которое наносится непосредственно на кольцевой элемент корпуса турбомашины в зону уплотнения между корпусом и лопаткой.

Недостатком известного материала является невозможность одновременного обеспечения высокой прирабатываемости и износостойкости покрытия.

Известен также материал прирабатываемого уплотнения турбомашины [патент США №4936745], выполненный в виде высокопористого керамического слоя с пористостью от 20 до 35 объемных %.

Недостатком известного материала является низкая эрозионная стойкость и прочность.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является материал прирабатываемого уплотнения турбомашины, содержащий частицы порошкового наполнителя, адгезионно соединенные между собой в монолитный материал [патент РФ №2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995]. При этом материал уплотнения содержит заполненный в сотовые ячейки и спеченный в вакууме или защитной среде гранулированный порошковый материл состава Cr-Fe-NB-C-Ni.

Известный материал прирабатываемого уплотнения турбомашины [патент РФ №2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995] используется для уплотнения, которое выполнено в виде жестко соединенного со статором слоя сотовой структуры. При соприкосновении выступов на торце лопатки с сотовой структурой острые кромки гребешков притупляются, что приводит к снижению эффективности уплотнения. При этом слой сотовой структуры может быть закреплен на элементе турбомашины методом сварки или пайки [например, патент РФ №2277637, МПК F01D 11/08, 2006 г.].

Процесс изготовления и прикрепления сотовой структуры достаточно сложен, трудоемок, а также связан с большими временными затратами.

При этом сотовая структура может быть соединена как с кольцевым элементом турбомашины, так и с отдельными, образующими кольцо вставками [например, патент РФ 2287063, МПК F01D 1 1/08, 2006 г.].

Недостатками прототипа являются невозможность одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также необходимости использования сотовых ячеек.

В этой связи использование уплотнения, не содержащего слоя сотовой структуры, а выполненного из монолитного материала допускающими врезание в него выступов лопатки и снижающими их износ в процессе эксплуатации, привело бы к дальнейшему повышению эффективности работы турбомашин.

Техническим результатом заявляемого изобретения является обеспечение высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также снижения трудоемкости его изготовления.

Технический результат достигается тем, что материал прирабатываемого уплотнения турбомашины, содержащий частицы порошкового наполнителя и порошковой добавки, адгезионно соединенные между собой в монолитный материал, в отличие от прототипа в качестве материала наполнителя использован сплав состава, в вес.%: Сr - от 12,0% до 14,0%, Мо - от 1,5% до 2,5%, Ti - 0,08%, С - 0,08%, Si - 0,10%), Mg - 0,20% Fe - остальное, с размерами частиц порошка от 30 мкм до 100 мкм, а в качестве порошковой добавки использованы гексагональный нитрид бора с размерами частиц порошка от 30 мкм до 100 мкм, в количестве от 4,0% до 5,0% от общего веса материала уплотнения и барий сернокислый с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,2% от общего веса материала уплотнения и стеарат цинка с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,8% от общего веса материала уплотнения.

Исследованиями авторов было установлено, что в определенных условиях возможно создание материала для уплотнений, обладающего, с одной стороны, достаточно высокими механической прочностью и износостойкостью, позволяющими изготавливать из него элементы уплотнений, не разрушающиеся в условиях эксплуатации, а с другой -обладать высокой прирабатываемостью. Совмещение высокой механической прочности и прирабатываемости в разработанном материале для уплотнений объясняется, в частности, тем, что адгезионная прочность частиц наполнителя, образующего материал, весьма высока, тогда как в результате мгновенного ударного-теплового воздействия в условиях эксплуатации уплотнения на отдельную частицу наполнителя кинетическая энергия удара переходит в тепловую энергию. В результате этого адгезионная прочность на границе между рассматриваемой частицей и контактирующими с ней частицами наполнителя резко снижается, и в результате удара происходит отрыв рассматриваемой частицы. В целом же процесс прирабатываемости уплотнения складывается из совокупности единичных процессов отрыва частиц наполнителя в результате снижения адгезионной прочности на границе между частицами в рабочей зоне уплотнения в процессе эксплуатации. Кроме того, отрыв и унос частицы приводит к отводу излишней теплоты из зоны приработки и не позволяет нагреваться основной массе материала. Таким образом реализуется совмещение адгезионной прочности соединения частиц наполнителя, составляющей величину от 20 до 100% от прочности частиц и адгезионной прочности частиц в рабочей зоне уплотнения (зоне контакта уплотнения с лопаткой) в процессе эксплуатации, которая составляет от 0,5 до 12% от прочности соединения частиц наполнителя. В связи с дискретным характером взаимодействия системы «уплотнение-лопатка», практически после приработки происходит их безконтактное взаимодействие. Однако для реализации описанного механизма прирабатываемости уплотнения необходимо обеспечить ряд условий. К этим условиям, в частности, относятся: размеры частиц наполнителя должны составлять величину от 30 мкм до 100 мкм; в качестве материала наполнителя использоваться сплав состава, в вес. %: Сr - от 12,0% до 14,0%, Мо - от 1,5% до 2,5%, Ti - 0,08%, С -0,08%), Si - 0,10%, Mg - 0,20%) Fe - остальное; в качестве порошковой добавки использоваться гексагональный нитрид бора с размерами частиц порошка от 30 мкм до 100 мкм, в количестве от 4,0% до 5,0% от общего веса материала уплотнения и барий сернокислый с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,2% от общего веса материала уплотнения и стеарат цинка с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,8% от общего веса материала уплотнени

Пример. В качестве основы для получения материала для порошкового наполнителя прирабатываемого уплотнения использовались составы, в вес. %: 1) Сr - 11,0%, Мо - 1,3%, Fe - остальное - неудовлетворительный результат (Н.Р.); 2) Сr - 12,0%, Мо - 1,5%, Fe - остальное -удовлетворительный результат (У.Р.); 3) Сr - 14,0%, Мо - 1,3%, Fe -остальное - (Н.Р.); 4) Сr - 11,0%, Мо - 1,5%, Fe - остальное - (Н.Р.); 5) Сr - 14,0%, Мо - 2,5%, Fe - остальное - (У.Р.); 6) Сr - 16,0%, Мо - 3,5%, Fe -остальное - (Н.Р.). Размеры частиц порошка наполнителя составляли величины от 30 мкм до 100 мкм.

В качестве порошковой добавки использованы: гексагональный нитрид бора с размерами частиц порошка от 30 мкм до 100 мкм, в количестве от 4,0% до 5,0% от общего веса материала уплотнения [3,8% - (Н.Р.); 4,0% - (У.Р.); 4,5% - (У.Р.); 5,0% - (У.Р.); 5,3% - (Н.Р.)] и барий сернокислый с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,2% от общего веса материала уплотнения [0,6% - (Н.Р.); 0,8% - (У.Р.); 1,0% - (У.Р.); 1,2%- (У.Р.); 1,4% - (Н.Р.)] и стеарат цинка с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8% до 1,8% от общего веса материала уплотнения [0,6% - (Н.Р.); 0,8% - (У.Р.). 1,3% - (У.Р.); 1,6% - (У.Р.); 1,8% - (У.Р.); 2,0% - (Н.Р.)]

Материал уплотнения был изготовлен спеканием в вакууме и защитной среде. Спекание одной части заготовок проводили при температуре 1200±100°С в вакуумной электропечи ОКБ 8086 при остаточном давлении в камере менее 10-2 мм рт.ст., а другой части - при той же температуре в среде осушенного диссоциированного аммиака, в засыпке из обожженного тонкомолотого глинозема. Давление прессования при изготовлении заготовок для всех вариантов было одинаковым и принято равным 70 кгс/мм. Механические свойства полученного материала составили: твердость НВ от 134 до 142; σ=29,7…38,1 кгс/мм2; σт=18,1…25,1 кгс/мм2; ударная вязкость Кс=1,21…1,59 кгм/см2.

Результаты испытаний образцов уплотнений из разработанного материала в условиях эксплуатации показали сочетание высоких прочностных характеристик уплотнений, с их хорошей прирабатываемостью.

Материал прирабатываемого уплотнения турбомашины, содержащий частицы порошкового наполнителя и порошковой добавки, адгезионно соединенные между собой в монолитный материал, отличающийся тем, что в качестве наполнителя использованы частицы порошка сплава состава, вес. %: Cr - от 12,0 до 14,0, Мо - от 1,5 до 2,5, Ti - 0,08, С - 0,08, Si - 0,10, Mg - 0,20, Fe - остальное, с размерами от 30 мкм до 100 мкм, а в качестве порошковой добавки использованы частицы гексагонального нитрида бора с размерами от 30 мкм до 100 мкм, в количестве от 4,0 до 5,0 вес.% от общего веса материала уплотнения и барий сернокислый с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8 до 1,2 вес.% от общего веса материала уплотнения и стеарат цинка с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 0,8 до 1,8 вес.% от общего веса материала уплотнения.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
22.10.2019
№219.017.d90b

Прирабатываемая вставка уплотнения турбины

Изобретение относится к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Прирабатываемая вставка уплотнения турбины выполнена из адгезионно соединенных между собой путем спекания частиц порошкового наполнителя и...
Тип: Изобретение
Номер охранного документа: 0002703669
Дата охранного документа: 21.10.2019
Показаны записи 61-70 из 145.
10.05.2018
№218.016.4b27

Способ упрочнения деталей из жаропрочных сплавов

Изобретение относится к машиностроению и может быть использовано для упрочнения деталей из жаропрочных сплавов. Упрочнение деталей проводят дробеструйной обработкой шариками и микрошариками твердостью HRC 60-64, при давлении 0,6 МПа. Обработку проводят в несколько этапов: на первом этапе...
Тип: Изобретение
Номер охранного документа: 0002651847
Дата охранного документа: 24.04.2018
09.06.2018
№218.016.5aa2

Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Изобретение относится к способу защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии. Осуществляют упрочняющую обработку микрошариками, полирование кромок лопаток блиска, ионно-плазменную модификацию материала поверхностного слоя лопаток блиска с последующим...
Тип: Изобретение
Номер охранного документа: 0002655563
Дата охранного документа: 28.05.2018
03.07.2018
№218.016.69c2

Способ изготовления раскатных колец с регулярной микроструктурой

Изобретение относится к способам раскатки заготовки в виде кольца. Раскатку заготовки осуществляют роликовыми инструментами. Вначале роликовым инструментом формируют регулярный микрорельеф поверхности за счет микрорельефа на его рабочей поверхности, а затем выглаживают поверхность микрорельефа...
Тип: Изобретение
Номер охранного документа: 0002659501
Дата охранного документа: 02.07.2018
13.07.2018
№218.016.70eb

Установка для ионно-плазменного модифицирования и нанесения покрытий на моноколеса с лопатками

Изобретение относится к технике для нанесения покрытий на детали машин, а именно к вакуумной ионно-плазменной обработке поверхностей, и может быть использовано для нанесения функциональных покрытий на моноколеса турбомашин. Установка для вакуумной ионно-плазменной обработки поверхности...
Тип: Изобретение
Номер охранного документа: 0002661162
Дата охранного документа: 12.07.2018
14.07.2018
№218.016.7164

Способ получения многослойной детали из титанового сплава

Использование: изобретение относится к способу получения многослойной детали из титанового сплава. Осуществляют ионно-имплантационное модифицирование листовой детали из титанового сплава путем ионной имплантации азота, углерода или бора с энергией 30-50 кэВ, плотностью тока 35-50 мкА/см и...
Тип: Изобретение
Номер охранного документа: 0002661294
Дата охранного документа: 13.07.2018
11.10.2018
№218.016.8fe7

Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для упрочняющей обработки пера рабочих лопаток компрессора газотурбинного двигателя или газотурбинной установки из высоколегированных сталей или сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002669136
Дата охранного документа: 08.10.2018
16.01.2019
№219.016.b07e

Способ нанесения защитного многослойного покрытия на лопатки блиска газотурбинного двигателя из титанового сплава от пылеабразивной эрозии

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защиты пера рабочих лопаток моноколеса компрессора ГТД из титановых сплавов от пылеабразивной эрозии. Способ нанесения защитного многослойного покрытия на лопатки...
Тип: Изобретение
Номер охранного документа: 0002677041
Дата охранного документа: 15.01.2019
24.01.2019
№219.016.b2d7

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002677908
Дата охранного документа: 22.01.2019
20.02.2019
№219.016.beb2

Способ нанесения покрытия и электродуговой испаритель с вращающимся катодом для осуществления способа

Изобретение к способу нанесения покрытий и электродуговому испарителю для осуществления способа и может быть применено в машиностроении, например, для защиты рабочих и направляющих лопаток турбомашин. Способ включает размещение деталей в вакуумной камере на приспособлении, приложение к...
Тип: Изобретение
Номер охранного документа: 0002399692
Дата охранного документа: 20.09.2010
26.02.2019
№219.016.c815

Способ ионно-имплантационной обработки моноколеса компрессора с лопатками из титановых сплавов

Изобретение относится к способу упрочнения рабочих лопаток моноколеса компрессора ГТД из титановых сплавов и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает установку моноколеса на валу держателя, помещение его внутрь вакуумной установки...
Тип: Изобретение
Номер охранного документа: 0002680630
Дата охранного документа: 25.02.2019
+ добавить свой РИД