×
31.07.2019
219.017.bad5

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО КОМПОЗИЦИОННОГО АНТИФРИКЦИОННОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к изготовлению изделия из высокотемпературного композиционного антифрикционного материала. Способ включает подготовку порошкообразных компонентов исходной смеси, измельчение до заданных размеров частиц, формование и спекание. Исходная смесь содержит никель, молибден, медь и дисульфид молибдена. Подготовку порошкообразных компонентов исходной смеси производят путем измельчения механоактивацией в планетарной мельнице до среднего размера частиц не более 100 нм. Формование полученной смеси осуществляют горячим прессованием в индукционно-вакуумной установке в графитовых пресс-формах со ступенчатым подъемом температуры и поэтапной выдержкой. Обеспечивается повышение механической работоспособности антифрикционного материала в условиях высокоинтенсивных механических воздействий сил трения качения, вращения и высоких температур. 1 пр., 1 табл., 2 ил.

Предполагаемое изобретение относится к области технологий изготовления антифрикционных материалов методом порошковой металлургии, и может быть использовано для получения высокотемпературных антифрикционных материалов, эксплуатируемых в условиях высокоинтенсивных механических воздействий сил трения качения и вращения, и высоких температур, например, на АЭС.

Известен из патента РФ №2535419, МПК С22С 1/10, публ. 10.12.2014 г. способ изготовления композиционного материала путем механоактивационной обработки исходной шихты до получения нанокомпозиционного порошкообразного материала на основе дисульфида молибдена и монокристаллического молибдена с последующим формованием термопрессованием при повышенных температурах.

Из уровня техники известен способ получения композиционного материала (патент РФ №2171307, МПК С22С 1/10, публ. 27.07.2001 г.), антифрикционного назначения, согласно которому литой композиционный состав на основе промышленных литейных алюминиевых сплавов (типа силуминов) содержит дискретные наполнители двух видов: высокотвердые, высокомодульные керамические частицы карбидов, нитридов, оксидов размером не более 20 мкм и частицы графита фракционного состава 40-160 мкм, объемная доля керамического наполнителя от 2,5 до 5,0 об. %.

К недостаткам известного изобретения относится недостаточно высокие антифрикционные свойства, стойкость к воздействию высоких температур и радиационных воздействий, которыми характеризуются условия эксплуатации изделий на АЭС.

Задачей авторов предлагаемого способа является разработка эффективного способа изготовления высокотемпературного композиционного антифрикционного материала, характеризующегося повышенными механической работоспособностью в условиях высокоинтенсивных механических воздействий сил трения и вращения и высоких температур порядка 1000°С, характеризующегося повышенной механической прочностью.

Новый технический результат, обеспечиваемый использованием предлагаемого изобретения, заключается в улучшении антифрикционных свойств, прочности и термостойкости за счет повышения степени гомогенизации формуемой смеси, улучшения однородности прогрева формуемой массы и предотвращения образования жидкой фазы при формовании.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа изготовления высокотемпературного композиционного антифрикционного материала, включающего подготовку порошкообразных компонентов исходной смеси, измельчение до необходимого размера, формование и спекание, согласно изобретению подготовку порошкообразных компонентов исходной смеси, в качестве которых используют порошкообразные металлы никель, молибден и медь, а также дисульфид молибдена, при соотношении соответственно: Мо - от 10 до 20% мас, Cu - от 1,0 до 10% мас., MoS2 - от 8 до 12% мас., Ni - остальное, производят путем измельчения механоактивацией в планетарной мельнице с частотой оборотов не менее 450 об/мин о среднего размера частиц не более 100 нм, формование полученной смеси осуществляют горячим прессованием в индукционно-вакуумной установке в графитовых пресс-формах в качестве формообразующего инструмента, по режиму со ступенчатым подъемом температуры, поэтапно с выдержкой на первом этапе при температуре 1040-1060°С в течение не более 15 мин, а затем с основной выдержкой при температуре 1130-1170°С в течение не менее 20 мин на втором этапе с удельным давлением прессования не менее 20 МПа, на котором происходит собственно формообразование, затем отключают нагрев и плавно снижают усилие прессования от максимального значения до нуля и производят охлаждение пресс-формы с находящимся внутри готовым изделием до комнатной температуры.

Заявляемый способ получения высокотемпературного композиционного антифрикционного материала поясняется следующим образом.

Антифрикционные материалы, характеризующиеся высокими трибо-техническими свойствами, используют в установках, где имеются вращающиеся элементы конструкций АЭС, работающие при высоких динамических нагрузках усилий трения, вращения, вибраций (коэффициент трения которых порядка κ≤0,3). Особенно востребованы антифрикционные материалы, характеризующиеся повышенной работоспособностью при высоких температурных воздействиях, или в зонах с повышенной радиационной средой (вращающиеся турбины АЭС, космические аппараты, авиация).

Условиям получения антифрикционных материалов с повышенными механическими характеристиками и термической прочностью оптимально соответствует метод порошковой металлургии. Метод порошковой металлургии наиболее эффективен для изготовления антифрикционных изделий различного химического состава с хорошей прирабатываемостью, высокой износостойкостью, низким и стабильным коэффициентом трения (обычно ≤0,3; при наличии смазки <0,1).

Первоначально проводили предварительную подготовку порошкообразных компонентов исходной смеси, измельчение до необходимого нано-размерного состояния исходной смеси, в качестве компонентов которой используют порошкообразные металлы никель, молибден и медь, а также сульфид молибдена. Измельчение производят путем механоактивации в планетарной мельнице с частотой оборотов не менее 450 об/мин до среднего размера частиц не более 100 нм.

Следует отметить, что при проведении предварительных опытов путем приготовления порошковых смесей в биконическом смесителе не удавалось получать однородный материал: мягкий дисульфид молибдена образовывал устойчивые конгломераты, которые препятствовали уплотнению материала при спекании. Чтобы предотвратить это явление, было решено для приготовления порошковых смесей использовать планетарную центробежную мельницу (ПЦМ). Этот аппарат позволяет осуществлять высокоэнергетическое воздействие на порошки за счет центробежного ускорения.

По предлагаемому технологическому режиму приготавливали смеси трех составов, % масс:

- 58% Ni + 20% Mo + 10% Cu + 12% MoS2;

- порошок сплава ПН70Ю30 + 10% MoS2;

- порошок сплава ПН75Ю23В2 + 10% MoS2.

Применяли барабан с футеровкой из твердого сплава, в котором проводили приготовление порошковых смесей антифрикционных материалов.

В качестве метода получения антифрикционного материала выбран метод горячего прессования порошков, в котором осуществляют одновременно и воздействие высокой температуры и механического усилия, который позволяет получать достаточно плотные, прочные изделия с минимальными припусками под механическую обработку. Метод горячего прессования менее чувствителен к совместимости компонентов материала. Этот метод имеет и существенные недостатки: он малопроизводителен, дорогостоящ, однако позволяет экономить дефицитные материалы, уменьшать отходы, снижать общую трудоемкость изготовления и при небольших сериях выпуска может иметь преимущество. Горячее прессование проводили на индукционно - вакуумной установке с верхним расположением пресса. В качестве формообразующего инструмента использовали графитовые пресс-формы. Экспериментально были установлены основные технологические параметры процесса горячего прессования для изготовления контрольных образцов композиционного антифрикционного материала.

На фиг. 2 представлена установка, в которой был реализован предлагаемый способ, где 1 - графитовая пресс-форма, 2 - гидравлический пресс, 3 - индуктор, 4 - порошковая формуемая заготовка (формовка), 5 - выводы индуктора, 6 - окно для замера и контроля температуры.

Горячее прессование проводили по режиму со ступенчатым подъемом температуры, поэтапно с выдержкой на первом этапе при температуре 1040-1060°С, что ниже температуры плавления самого легкоплавкого компонента формуемой порошкообразной смеси (медь, Тпл. = 1083°С) в течение не более 15 мин, чтобы не допустить появления жидкой фазы. Затем формуемую смесь прогревали с основной выдержкой при температуре 1130-1170°С в течение не менее 20 мин на втором этапе с удельным давлением прессования не менее 20 МПа, на котором происходит собственно формообразование, затем отключали нагрев и плавно снижали усилие прессования от максимального значения до нуля и производили охлаждение пресс-формы с находящимся внутри готовым изделием до комнатной температуры. После горячего прессования были получены образцы со средней плотностью 7,63 г/см3. При механической обработке полученного материала у изготовленных из него изделий сохраняются острые кромки, тогда как осыпания, значительные дефекты поверхности не наблюдались. После окончательной механической доработке были изготовлены подшипники (фиг. 1), которые выдержали контрольные испытания, результаты которых приведены в табл. 1.

Экспериментально установлено, что использование в составе материала дисульфида молибдена приводит к проявлению антифрикционного эффекта в готовом материале, поскольку дисульфид молибдена функционирует в качестве «твердой смазки»,

Исследования показали, что готовый материал имеет однородную двухфазную структуру с равномерно распределенной пористостью, что полностью отвечает требованиям к высокотемпературным антифрикционным изделиям.

Таким образом, при использовании предлагаемого способа изготовления высокотемпературного композиционного антифрикционного материала были достигнуты более высокие по сравнению с прототипом результаты, а именно, улучшение антифрикционных свойств, прочности и термостойкости за счет повышения степени гомогенизации формуемой смеси, улучшения однородности прогрева формуемой массы и предотвращения образования жидкой фазы при формований.

Возможность промышленной реализации предлагаемого способа была подтверждена следующим примером.

Пример 1. При проведении предварительных экспериментальных отработок подготовку порошкообразных смесей из порошкообразных металлов (никель, молибден и медь) осуществляют в планетарной центробежной мельнице (ПЦМ) («Pulverisette 6») при скорости вращения барабана 450. об/мин (соответствует центробежному ускорению 15g) с использованием в качестве размольных тел шаров, соотношение «шары : смесь»: = 1:1, барабан с футеровкой из «твердого сплава» ВК15, шары стальные (ШХ15), время обработки - 4 мин. Выбранные параметры обработки были установлены опытным путем и значительно отличаются от используемых при механоактивации порошковых материалов, т.к. решалась задача приготовления однородной смеси при минимальном ее загрязнении материалом размольной гарнитуры. В результате удалось добиться требуемой однородности порошковых нанодисперсных смесей, что является основой получения гомогенных (однородных по всей массе) формуемых смесей. При экспериментальных отработках по горячему прессованию были установлены основные технологические параметры процессов горячего прессования для каждого из материалов (табл. 1).

Горячее прессование проводили в графитовых пресс-формах, для защиты образцов от взаимодействия с графитом использовали прокатанное полотно из порошка гексагонального нитрида бора (BN) со связкой (полиизо-бутилен П-20 в количестве 20% по массе), толщина полотна 0,3-0,5 мм.

Горячим прессованием изготавливали образцы из материалов: 58% мас. Ni + 20% мас. Мо + 10% мас. Cu + 12% мас. MoS2; ПН75Ю23В2 + 10% MoS2; ПН70Ю30 + 10% MoS2 (табл. 1 составы 1, 2, 3 соответственно).

В ходе опытов по горячему прессованию были установлены основные технологические параметры процессов горячего прессования для каждого из материалов (табл. 1):

После горячего прессования были получены образцы с плотностью 7,63 г/см3 (состав 1), 6,34 г/см3 (состав 2) и 5,63 г/см3 (состав 3).

Для повышения плотности антифрикционного материала провели ряд опытов по оптимизации режима горячего прессования. В ходе опытов было установлено, что при достижении температуры 1200°С происходит расплавление компонентов.

В результате была введена промежуточная выдержка для гомогенизации состава при температуре 1040-1060°С в течение 15 минут. Температуру промежуточной выдержки выбрали несколько ниже температуры плавления самого легкоплавкого компонента (Cu, 1083°С), чтобы не допускать появления жидкой фазы. Благодаря введению промежуточной выдержки удалось повысить температуру изотермической выдержки при горячем прессовании с 1070 до 1150°С, давление прессования также увеличили с 15 до 20 МПа, время выдержки оставили прежним - 20 минут.

В результате удалось увеличить плотность материала: были изготовлены образцы со средней плотностью 8,50 г/см3. При механической обработке полученного материала сохраняются острые кромки, осыпаний и иных дефектов не наблюдалось.

Для исследуемого материала (Мо - 20%, Cu - 10%, MoS2 - 12%, Ni -58%) определяли основные физико-механические характеристики: предел прочности при растяжении, предел прочности при статическом изгибе, коэффициенты трения покоя, коэффициент теплового линейного расширений.

Испытания проводили при комнатной температуре. Определенные в ходе испытаний значения механической прочности, рабочей температуры и коэффициента трения представлены в табл. 1

Как это показали эксперименты и данные табл. 1, при реализации заявляемого способа были достигнуты улучшение антифрикционных свойств, прочности и термостойкости за счет повышения степени гомогенизации формуемой смеси и улучшения однородности прогрева формуемой массы и предотвращения образования жидкой фазы при формовании.

Способ изготовления изделия из высокотемпературного композиционного антифрикционного материала, включающий подготовку порошкообразных компонентов исходной смеси, измельчение до заданных размеров частиц, формование и спекание, отличающийся тем, что подготовку порошкообразных компонентов исходной смеси, в качестве которых используют порошкообразные металлы никель, молибден и медь и дисульфид молибдена при соотношении соответственно Mo - от 10 до 20 мас.%, Cu - от 1,0 до 10 мас.%, MoS - от 8 до 12 мас.%, Ni - остальное, производят путем измельчения механоактивацией в планетарной мельнице с частотой оборотов не менее 450 об/мин до среднего размера частиц не более 100 нм, формование полученной смеси осуществляют горячим прессованием в индукционно-вакуумной установке в графитовых пресс-формах в качестве формообразующего инструмента в режиме со ступенчатым подъемом температуры и поэтапной выдержкой, причем на первом этапе выдержку ведут при температуре 1040-1060°С в течение не более 15 мин, а на втором этапе выдержку ведут при температуре 1130-1170°С в течение не менее 20 мин с удельным давлением прессования не менее 20 МПа с обеспечением формообразования, затем отключают нагрев и плавно снижают усилие прессования от максимального значения до нуля и производят охлаждение пресс-формы с находящимся внутри готовым изделием до комнатной температуры.
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО КОМПОЗИЦИОННОГО АНТИФРИКЦИОННОГО МАТЕРИАЛА
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО КОМПОЗИЦИОННОГО АНТИФРИКЦИОННОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 311-320 из 796.
29.05.2018
№218.016.55b2

Устройство для намотки канатов диаметром до 0,5 миллиметров

Канатовьющая машина может быть использована в машиностроении, металлургии, авиационной и космической технике для получения канатов с различными геометрическими и физическими характеристиками. Канатовьющая машина содержит ротор, на котором установлены зарядные катушки с проволокой,...
Тип: Изобретение
Номер охранного документа: 0002654413
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5679

Способ отверждения органических жидких радиоактивных отходов

Изобретение относится к области охраны окружающей среды, в частности к процессам отверждения органических ЖРО. Способ отверждения органических жидких радиоактивных отходов (ЖРО) заключается в соединении ЖРО с отвердителем, содержащим парафин, нагревании полученной смеси и выдерживании до...
Тип: Изобретение
Номер охранного документа: 0002654542
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5700

Способ герметизации блока охлаждения активного элемента в твердотельном лазере

Изобретение относится к лазерной технике. Способ герметизации блока охлаждения активного элемента в твердотельном лазере включает два этапа: установку трубки для активного элемента и установку активного элемента в трубку, на первом этапе устанавливают трубку с прижимами и уплотнениями, на...
Тип: Изобретение
Номер охранного документа: 0002655045
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.573c

Способ определения удельной энергии, необходимой для разрушения опасного астероида ядерным взрывом

Изобретение относится к области борьбы с астероидной опасностью в рамках техники моделирования физических процессов и природных явлений. Способ предусматривает изготовление микромодели (ММ) из вещества, подобного веществу астероида. ММ подвергают в вакуумной камере воздействию импульсного...
Тип: Изобретение
Номер охранного документа: 0002654880
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.577e

Способ испытаний парашютных систем и стенд для его осуществления

Группа изобретений относится к испытательной технике и может быть использована для испытаний парашютных систем. Способ испытаний парашютных систем включает разгон парашютной системы, размещенной в контейнере, закрепленном на раме ракетной тележки с ракетным двигателем на твердом топливе (РДТТ),...
Тип: Изобретение
Номер охранного документа: 0002654885
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5883

Ускоритель электронов на основе сегнетоэлектрического плазменного катода

Изобретение относится к ускорителю электронов на основе сегнетоэлектрического плазменного (СЭП) катода. В предложенном ускорителе накопитель энергии совместно с формирователем импульса выполнен в виде формирующей линии, состоящей из n+1, где n - натуральное число отрезков однородных линий с...
Тип: Изобретение
Номер охранного документа: 0002653505
Дата охранного документа: 10.05.2018
29.05.2018
№218.016.58c9

Система охлаждения массивно-параллельных вычислительных систем

Изобретение относится к области вычислительной техники, а именно к охлаждающим системам массивно-параллельных вычислительных систем, в том числе суперкомпьютеров эксамасштаба, содержащих оборудование для обработки электронных данных. Технический результат - отсутствие «холодных» коридоров и,...
Тип: Изобретение
Номер охранного документа: 0002653499
Дата охранного документа: 10.05.2018
09.06.2018
№218.016.5aa9

Способ изготовления изделий из магнитно-мягкого сплава 27кх

Изобретение относится к области металлургии, а именно к способам улучшения магнитных свойств, и может быть использовано в электронике и приборостроении. Способ изготовления изделий из магнитно-мягкого сплава 27КХ включает интенсивную пластическую деформацию исходного магнитно-мягкого сплава с...
Тип: Изобретение
Номер охранного документа: 0002655416
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b49

Устройство для формирования нестационарной затухающей ударной волны в слое конденсированной среды

Изобретение относится к устройствам для исследования ударно-волновых явлений в конденсированных средах и может быть использовано для получения нестационарных затухающих ударных волн (волн Тейлора) в конденсированной среде (в частности, в воде). Устройство состоит из ударной трубы, включающей...
Тип: Изобретение
Номер охранного документа: 0002655695
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c43

Стенд для ударных испытаний

Изобретение относится к испытательному оборудованию. Стенд содержит стол для закрепления объекта испытаний (ОИ), установленный в центральной части связанного с основанием упругого элемента, средство создания ударной нагрузки в виде падающего груза. Падающий груз размещен на направляющих, на...
Тип: Изобретение
Номер охранного документа: 0002655700
Дата охранного документа: 29.05.2018
Показаны записи 1-7 из 7.
10.09.2013
№216.012.680a

Способ нанесения защитного покрытия на изделия из стали или титана

Изобретение относится к области машиностроения, а именно к химико-термической обработке изделий из стали или титана, и может быть использовано для нанесения защитного покрытия на детали, работающие в условиях воздействия агрессивных сред, высоких температур. Осуществляют подготовку защищаемой...
Тип: Изобретение
Номер охранного документа: 0002492281
Дата охранного документа: 10.09.2013
10.12.2014
№216.013.0fa2

Высокотемпературный антифрикционный материал

Изобретение относится к порошковой металлургии, в частности к высокотемпературным антифрикционным материалам. Может использоваться в высокотемпературных зонах промышленного оборудования, в частности на АЭС. Антифрикционный материал содержит, мас.%: дисульфид молибдена не более 10, керамические...
Тип: Изобретение
Номер охранного документа: 0002535419
Дата охранного документа: 10.12.2014
20.02.2015
№216.013.2956

Способ изготовления высокотемпературного антифрикционного материала

Изобретение относится к области порошковой металлургии, в частности к антифрикционным материалам для применения в высокотемпературных зонах промышленного оборудования. Способ изготовления высокотемпературного антифрикционного материала включает подготовку порошкообразных компонентов исходной...
Тип: Изобретение
Номер охранного документа: 0002542039
Дата охранного документа: 20.02.2015
20.08.2015
№216.013.70ca

Теплобронезащитная слоистая система

Изобретение относится к области средств защиты оборудования от воздействия высоких температур, излучения, поражающего фактора и касается теплобронезащитной слоистой системы. Содержит установленные в защитном кожухе и соединенные между собой каркасный, упрочненные и теплоизолирующие слои. В...
Тип: Изобретение
Номер охранного документа: 0002560444
Дата охранного документа: 20.08.2015
28.08.2018
№218.016.7fb2

Стеклокерамический композиционный электроизоляционный материал и способ его изготовления

Изобретение относится к стеклокерамическому композиционному электроизоляционному материалу. Шихта содержит следующие совместно измельченные и механоактивированные компоненты, мас.%: стекло СЛ2-1 50-70; фторфлогопит – остальное. Перемешивание компонентов проводят за два интервала не менее чем...
Тип: Изобретение
Номер охранного документа: 0002664993
Дата охранного документа: 24.08.2018
23.11.2018
№218.016.9fed

Шихта для получения горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе

Изобретение относится к получению горячим прессованием высокотемпературного композиционного антифрикционного материала на никелевой основе. Шихта содержит нанопорошки никеля (Ni) и молибдена (Мо), порошок дисульфида молибдена (MoS) и порошок меди (Cu). При этом частицы порошка дисульфида...
Тип: Изобретение
Номер охранного документа: 0002672975
Дата охранного документа: 21.11.2018
09.06.2019
№219.017.794b

Способ изготовления защитного слоистого экрана (варианты)

Изобретение относится к способам изготовления защитных слоистых экранов. Способ включает формирование пакета из слоев, один из которых выполнен из порошкообразного материала на основе карбида бора, а другие - на основе карбида и нитрида бора дисперсностью 5-10 мкм, с градиентом относительного...
Тип: Изобретение
Номер охранного документа: 0002343044
Дата охранного документа: 10.01.2009
+ добавить свой РИД