×
27.07.2019
219.017.b987

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЦЕЛЛЮЛОЗНОГО ЗАГУСТИТЕЛЯ ДЛЯ ПЛАСТИЧНОЙ СМАЗКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам применения целлюлозы, более конкретно, к способам получения дисперсий целлюлозы как органического биоразлагаемого загустителя для смазочных материалов, в том числе пластичных смазок. Способ получения целлюлозного загустителя для смазок включает получение суспензии целлюлозы в среде протонодонорного осадителя - спирта, содержащего от 1 до 4 атомов углерода, или воды. Вначале целлюлозу вводят в смесь растворителей, содержащую N-метилморфолин N-оксид и полярный апротонный сорастворитель с параметром растворимости Гильдебранда от 22.5 до 25.0 МПа. Затем перемешивают полученную смесь при температуре от 80°С до 140°С до получения раствора целлюлозы с концентрацией 0.5-5 мас. % и добавляют осадителя с образованием путем фазового распада суспензии целлюлозы. Затем ее промывают осадителем до удаления смеси растворителей. Технический результат: повышение эффективной вязкости и предела текучести концентрированных суспензий целлюлозы. 1 табл., 7 пр.

Изобретение относится к способам применения целлюлозы, более конкретно, к способам получения дисперсий целлюлозы как органического биоразлагаемого загустителя для смазочных материалов, в том числе пластичных смазок.

К известным техническим решениям получения дисперсий целлюлозы, в т.ч. наноцеллюлозы, относятся обработка целлюлозного сырья с целью его измельчения благодаря интенсивному механическому воздействию, которое может сочетаться с предварительным, одновременным или многократным проведением процедур кислотного, щелочного или ферментативного гидролиза сырья (см., патент RU 2428482, кл. МПК С12Р 19/04, опубл. 10.09.2011). Полученные композиции характеризуются содержанием целлюлозы в количестве от 0.01 до 1 мас. %, тогда как предпочтительное содержание целлюлозы составляет от 0.03 до 0.5 мас. % в общей массе жидких композиций. Данные композиции модифицируют вязкостные свойства водной среды, а именно при добавлении целлюлозы в количестве не более 0.36 мас. % в воду приводит к увеличению ее вязкости по меньшей мере до 300 сП (0.3 Па⋅с), а также придает образцу предел текучести величиной по меньшей мере 1.0 дин/см2 (0.1 Па).

К недостаткам данного изобретения можно отнести получение низкоконцентрированных дисперсий (суспензий) и недостаточное загущение дисперсионной среды для придания ей свойств пластичной смазки.

Известен способ получения целлюлозного загустителя для смазок, включающий смешение целлюлозы в форме нановолокна с водой с получением водной дисперсии с содержанием нановолокна 2% мас. (см., заявка US 2018/79983, кл. МПК С10М 119/20, С10М 169/06, С10М 175/00, С10М 177/00, опубл. 22.03.2018).

Этот способ может быть принят как наиболее близкий аналог (прототип).

Недостаток прототипа заключается в том, что целлюлоза в виде нановолокон (торговой марки "BiNFi-s", "Sugino Machine Limited", Япония) недостаточно повышает вязкость смазки. Согласно данным производителя нановолокон эффективная вязкость их 2%-ной дисперсии при скорости сдвига 0.3 с-1 составляет 300 Па⋅с, тогда как предел текучести дисперсии равен 100 Па.

Задача изобретения заключается в получении концентрированной дисперсии целлюлозы, характеризующейся более высокими показателями эффективной вязкости и предела текучести.

Поставленная задача решается тем, что в способе получения целлюлозного загустителя для пластичной смазки, включающем получение суспензии целлюлозы в среде протонодонорного осадителя, его осуществляют путем введения целлюлозы в смесь растворителей, содержащую N-метилморфолин N-оксид и полярный апротонный сорастворитель с параметром растворимости Гильдебранда от 22.5 до 25.0 МПа1/2, перемешивания полученной смеси при температуре от 80°С до 140°С до получения раствора целлюлозы с концентрацией 0.5-5 мас. % и добавления протонодонорного осадителя - спирта, содержащего от 1 до 4 атомов углерода, или воды, с образованием путем фазового распада суспензии целлюлозы, которую затем промывают протонодонорным осадителем до удаления указанной смеси растворителей.

Согласно предлагаемому изобретению в качестве смеси апротонных полярных растворителей используют N-метилморфолин N-оксид и сорастворитель, характеризующийся параметром растворимости Гильдебранда, лежащим в пределах от 22.5 до 25.0 МПа1/2. В качестве таких сорастворителей могут выступать, например, диметилсульфоксид (24.9 МПа1/2), N,N-диметилформамид (24.9 МПа1/2), N,N-диметилацетамид (22.8 МПа1/2), N-метилпирролидон (23.0 МПа1/2), гексаметилфосфортриамид (23.3 МПа1/2), ацетонитрил (24.4 МПа1/2) и другие. В качестве протонодонорного инициатора фазового распада (осадителя целлюлозы) используют или воду, или любой спирт, содержащий не более четырех атомов углерода (например, метанол, этанол, этиленгликоль, пропанол, изопропанол, пропиленгликоль, глицерин и т.д.).

Нижеследующие примеры иллюстрируют предлагаемое техническое решение.

Дисперсию целлюлозного загустителя получают посредством фазового распада раствора целлюлозы, приготовленного в смеси N-метилморфолин N-оксида и диметилсульфоксида, взятых в соотношении 1 к 2.5, введением в этот раствор низкомолекулярного спирта - метанола (Пример 1), или более высокомолекулярного спирта, например, изобутанола (Пример 2); кроме того, для инициирования фазового распада можно использовать воду (Пример 3). Характеристикой дисперсий с одинаковым содержанием целлюлозного загустителя является эффективная вязкость: чем выше ее уровень, тем более данный целлюлозный загуститель способен загущать смазочную композицию. Поскольку с ростом температуры эффективная вязкость падает, композиции с большей вязкостью предназначены для использования при более высоких температурах. При прочих равных условиях для получения более вязкой композиции следует менее интенсивно разбавлять загуститель осадителем при его промывке для создания более концентрированной дисперсии (Пример 4).

Пример 5 (сравнительный) показывает повышение вязкости и предела текучести суспензии целлюлозы при том же массовом содержании целлюлозы, что в известном техническом решении (патент РФ 2428482).

Стоит отметить, что рост концентрации загустителя в составе смазочной композиции может благоприятствовать снижению износа (Пример 6).

Характеристикой смазочных композиций является способность снижать коэффициент трения между трущимися поверхностями. Коэффициент трения между стальными поверхностями, измеренный при использовании пары трения шар-плоскость, силы трения 30 Н и линейной скорости контртела 1.5 м/с, составляет 0.57. Смазывание поверхностей полученными дисперсиями снижает коэффициент трения до уровня 0.1-0.19, причем конкретное значение зависит от природы дисперсионный среды и понижается с повышением содержания целлюлозного загустителя.

Способность целлюлозного загустителя к повышению вязкости среды и снижению коэффициента трения при изменении условий его получения не ухудшается (Пример 7).

Пример 1

Для получения раствора целлюлозы один ее грамм добавляют в комплексный растворитель, состоящий из 14 грамм N-метилморфолин N-оксида и 35 грамм диметилсульфоксида. При температуре 120°С смесь перемешивают на устройстве роторного типа в течение 20 минут для получения прозрачного 2 мас. %-ного раствора целлюлозы желтого окраса. Затем, не прекращая интенсивного перемешивания, прибавляют 100 мл метанола. Полученную в результате фазового распада массу охлаждают, промывают на фильтре Шотта с использованием колбы Бунзена и водоструйного вакуумного насоса последовательным прибавлением метанола (общим объемом 200 мл) для удаления остатков N-метилморфолин N-оксида и диметилсульфоксида. После промывания массу извлекают (не давая ей высохнуть под вакуумом) и разбавляют метанолом для получения 2 мас. %-ной дисперсии. Полученная дисперсия представляет собой вязкопластичный органогель с эффективной вязкостью, измеренной при скорости сдвига 0.3 с-1 и 25°С, 1500 Па⋅с и пределом текучести 460 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 2

К 2 мас. %-ному раствору целлюлозы в смеси N-метилморфолин N-оксида и диметилсульфоксида, полученному по способу, указанному в примере 1, нагретому до 120°С и интенсивно перемешиваемому на роторном перемешивающем устройстве, прибавляют 100 мл изобутанола. Полученную в результате фазового распада массу охлаждают и промывают как указанно в примере 1, но с использованием для промывки изобутанола вместо метанола. Полученная дисперсия, содержащая 2 мас. % целлюлозного загустителя, представляет собой вязкопластичный органогель, характеризующийся эффективной вязкостью 1300 Па⋅с и пределом текучести 400 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 3

К 2 мас. %-ному раствору целлюлозы в смеси N-метилморфолин N-оксида и диметилсульфоксида, полученному по способу, указанному в примере 1, нагретому до 120°С и интенсивно перемешиваемому на роторном перемешивающем устройстве, прибавляют 100 мл воды. Полученную в результате фазового распада массу охлаждают и промывают как указанно в примере 1, но с использованием для промывки воды вместо метанола. Полученная дисперсия, содержащая 2 мас. % целлюлозного загустителя, представляет собой вязкопластичный гидрогель, характеризующийся эффективной вязкостью 1600 Па⋅с и пределом текучести 490 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 4

Дисперсию получают аналогично способу, указанному в примере 1, но при промывании целлюлозу разбавляют для достижения уровня ее концентрации 3 мас. %. Полученная дисперсия, содержащая 3 мас. % целлюлозного загустителя, представляет собой вязкопластичный органогель, характеризующийся эффективной вязкостью 2500 Па⋅с и пределом текучести 750 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 5 (сравнительный)

Дисперсию получают аналогично способу, указанному в примере 3, но при промывании целлюлозу разбавляют для достижения уровня ее концентрации 0.36 мас. %. Полученная дисперсия, содержащая 0.36 мас. % целлюлозного загустителя, представляет собой вязкопластичный гидрогель, характеризующийся эффективной вязкостью 3.0 Па⋅с и пределом текучести 0.9 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 6

Дисперсию получают аналогично способу, указанному в примере 3, но при промывании целлюлозу разбавляют для достижения уровня ее концентрации 3.2 мас. %. Полученная дисперсия, содержащая 3.2 мас. % целлюлозного загустителя, представляет собой вязкопластичный гидрогель, характеризующийся эффективной вязкостью 2300 Па⋅с и пределом текучести 690 Па.

Результаты по предлагаемому способу представлены в таблице.

Пример 7

Для получения раствора целлюлозы два ее грамма добавляют в комплексный растворитель, состоящий из 35 грамм N-метилморфолин N-оксида и 14 грамм диметилформамида. При температуре 140°С смесь перемешивают на устройстве роторного типа в течение 20 минут для получения прозрачного 4 мас. %-ного раствора целлюлозы желтого окраса. Затем, не прекращая интенсивного перемешивания, прибавляют 100 мл метанола. Полученную в результате фазового распада массу охлаждают и промывают как указанно в примере 1. Полученная дисперсия, содержащая 2 мас. % целлюлозного загустителя, представляет собой вязкопластичный органогель, характеризующийся эффективной вязкостью 1500 Па⋅с и пределом текучести 440 Па.

Результаты по предлагаемому способу представлены в таблице.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в повышении эффективной вязкости и предела текучести концентрированных суспензий целлюлозы.

Таким образом, техническое решение позволяет получать целлюлозные загустители для использования в составе смазочных композиций, предназначенных для широких областей применения.

Способ получения целлюлозного загустителя для пластичной смазки, включающий получение суспензии целлюлозы в среде протонодонорного осадителя, отличающийся тем, что его осуществляют путем введения целлюлозы в смесь растворителей, содержащую N-метилморфолин N-оксид и полярный апротонный сорастворитель с параметром растворимости Гильдебранда от 22.5 до 25.0 МПа, перемешивания полученной смеси при температуре от 80°С до 140°С до получения раствора целлюлозы с концентрацией 0.5-5 мас. % и добавления протонодонорного осадителя - спирта, содержащего от 1 до 4 атомов углерода, или воды с образованием путем фазового распада суспензии целлюлозы, которую затем промывают протонодонорным осадителем до удаления указанной смеси растворителей.
Источник поступления информации: Роспатент

Показаны записи 31-40 из 141.
20.07.2015
№216.013.6332

Способ получения синтез-газа

Изобретение относится к области нефтехимии и более конкретно к способу получения синтез-газа, который используется как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Способ получения синтез-газа включает окислительную конверсию...
Тип: Изобретение
Номер охранного документа: 0002556941
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6369

Способ получения тромборезистентного полимерного материала

Изобретение относится к химии полимеров и медицине, а именно к получению тромборезистентных полимерных материалов, которые находят применение в медицинской промышленности для изготовления контактирующих с кровью изделий, например протезов кровеносных сосудов, деталей имплантируемых в живой...
Тип: Изобретение
Номер охранного документа: 0002556996
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.636a

Способ гидроконверсии тяжелых фракций нефти

Настоящее изобретение относится к области нефтепереработки тяжелых нефтяных фракций. Изобретение касается способа гидроконверсии тяжелых фракций нефти - исходного сырья, состоит из нулевой стадии и последующих N стадий. Нулевая стадия включает подачу в реактор сырья, прекурсора катализатора -...
Тип: Изобретение
Номер охранного документа: 0002556997
Дата охранного документа: 20.07.2015
10.11.2015
№216.013.8bd3

Способ определения изотерм сорбции газов и паров в мембранных материалах и устройство для его осуществления

Изобретение относится к области определения сорбционных характеристик веществ, а именно к способам измерения величины сорбции и построения изотерм сорбции газа (пара) в различных мембранных материалах. Для определения изотерм сорбции газов и паров в мембранных материалах предварительно...
Тип: Изобретение
Номер охранного документа: 0002567402
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8cb0

Способ получения биоспецифического гидрогелевого сорбента для выделения протеиназ

Изобретение относится к области получения биоспецифического гидрогелевого сорбента для выделения протеиназ. Сорбент получают путем радикальной полимеризации под действием окислительно-восстановительного катализатора при комнатной температуре. Полимеризации подвергают водный раствор, содержащий...
Тип: Изобретение
Номер охранного документа: 0002567623
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.9d0e

Катализатор получения алкадиенов (варианты) и способ получения алкадиенов с его применением (варианты)

Изобретение относится к синтезу основных мономеров синтетического каучука, в частности бутадиена-1,3 и изопрена каталитическим превращением низших спиртов. Описан катализатор получения алкадиенов из низших спиртов состава, мас.%: NaO - 0,1÷0,3, MgO - 30÷40, SiO - остальное и другой...
Тип: Изобретение
Номер охранного документа: 0002571831
Дата охранного документа: 20.12.2015
27.03.2016
№216.014.c96f

Дренаж для лечения глаукомы

Изобретение относится к области химии полимеров и медицины, а именно к дренажу для лечения глаукомы. Дренаж для лечения глаукомы размером 7.0-9.0×2.0-3.0×0.08-0.1 мм выполнен из сшитого полимера с концентрацией воды 70-80% масс., содержащего 30-50 мг антибиотика и 3.0-5.5 мг кортикостероида на...
Тип: Изобретение
Номер охранного документа: 0002578424
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.cf9e

Способ регенерации молибденсодержащего катализатора гидроконверсии

Изобретение относится к способу регенерации молибденсодержащего катализатора из остатков гидроконверсии тяжелого нефтяного сырья. Способ включает термообработку непревращенного остатка гидроконверсии, выкипающего при температуре выше 520°С и содержащего распределенный ультрадисперсный...
Тип: Изобретение
Номер охранного документа: 0002575175
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.32c5

Способ получения композитного лака для электропроводящего материала

Способ может быть использован для получения композиционных материалов, лаков и покрытий, обладающих высокими электрофизическими и прочностными характеристиками, которые могут быть использованы для создания электропроводящих и антистатических материалов, защитных экранов от электромагнитного...
Тип: Изобретение
Номер охранного документа: 0002581084
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4af2

Катализатор и способ конверсии этанола, метанола или их смеси

Изобретение относится к области получения ароматических углеводородов из спиртов, а именно к катализатору конверсии этанола, метанола или их смеси в ароматические углеводороды. Катализатор содержит цеолит HZSM-5, ZnO и дополнительно содержит FeO и MgO при следующем составе в расчете на оксиды,...
Тип: Изобретение
Номер охранного документа: 0002594564
Дата охранного документа: 20.08.2016
Показаны записи 11-16 из 16.
18.03.2020
№220.018.0cbc

Способ получения полимерной пленки

Изобретение относится к способу получения полимерных гидрофобных пленок и может применяться для получения специальных покрытий для предотвращения коррозии металлических поверхностей, антиобледенительных покрытий для элементов строительных конструкций, самоочищающихся деталей транспортных...
Тип: Изобретение
Номер охранного документа: 0002716795
Дата охранного документа: 16.03.2020
21.03.2020
№220.018.0e74

Способ получения основы для пластырей и гелей (варианты)

Изобретение относится к медицинской и химико-фармацевтической промышленности, а именно к вариантам способа получения основы для пластырей или гелей, которые могут быть использованы в лечебно-профилактических учреждениях, в домашних условиях для наружного применения в качестве лечебного средства...
Тип: Изобретение
Номер охранного документа: 0002717086
Дата охранного документа: 18.03.2020
21.06.2020
№220.018.28c2

Способ получения клея-расплава

Изобретение относится к области клеящих материалов и, более конкретно, к способам получения полимерных клеев-расплавов, предназначенных для формирования адгезионных соединений между различными материалами, в том числе металлами, характеризующихся высокой прочностью образованной связи в...
Тип: Изобретение
Номер охранного документа: 0002724047
Дата охранного документа: 19.06.2020
12.07.2020
№220.018.31f0

Растворитель для поликетона и способ переработки поликетона с его применением

Изобретение относится к области физической химии высокомолекулярных соединений, конкретно к составу растворителя для переработки алифатического поликетона, и может быть использовано для получения полимерных пленок, мембран, волокон и других полезных изделий для применения в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002726252
Дата охранного документа: 10.07.2020
15.07.2020
№220.018.3246

Способ получения полимерного нанокомпозита с наполнителем из асфальтенов

Изобретение относится к области химии высокомолекулярных соединений, к способу получения полимерных нанокомпозитов с наполнителем из асфальтенов, и предназначено для утилизации или переработки смолистых высокомолекулярных составляющих «тяжелых» нефтей - асфальтенов, в полимерные продукты с...
Тип: Изобретение
Номер охранного документа: 0002726356
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.444b

Растворитель и способ переработки поликетона и/или полиамида с его использованием (варианты)

Настоящее изобретение относится к растворителю для полиамида и/или поликетона, а также к способу переработки полимера путем растворения его в растворителе. Изобретение может быть использовано для получения полимерных пленок, мембран, волокон и других изделий для применения в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002738836
Дата охранного документа: 17.12.2020
+ добавить свой РИД