×
23.07.2019
219.017.b79b

УСТАНОВКА РЕГЕНЕРАЦИИ ВОДНОГО РАСТВОРА МЕТАНОЛА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение предназначено для использования в нефтяной и газонефтяной промышленности. Установка регенерации водного раствора метанола включает в себя рекуперативный теплообменник, ректификационную колонну, охлаждающий теплообменник, первый сепаратор, насос орошения, компрессор, рекуперативный теплообменный аппарат, теплообменник, второй сепаратор и испаритель. Вход нагретого водного раствора метанола в ректификационную колонну соединен с выходом нагретого водного раствора метанола, выполненным в рекуперативном теплообменнике. Вход газового потока в ректификационной колонне соединен с выходом охлаждающего газового потока, выполненным в рекуперативном теплообменном аппарате. Вход для орошающего жидкостного потока, выполненный в ректификационной колонне, соединен с напорным патрубком насоса орошения, всасывающий патрубок которого соединен с выходом жидкостного потока, выполненным в первом сепараторе. Выход парогазовой смеси, выполненный в ректификационной колонне, соединен с входом охлаждающего теплообменника, выход которого соединен с входом парогазовой смеси, выполненным в первом сепараторе. Выход кубовой жидкости, выполненный в ректификационной колонне, соединен с входом кубовой жидкости, выполненным в испарителе, выход пара из которого соединен с входом пара, выполненным в кубовой части ректификационной колонны. Выход парогазовой смеси, выполненный в первом сепараторе, соединен с входом компрессора, выход из которого соединен с входом компримированной парогазовой смеси, выполненным в рекуперативном теплообменном аппарате. Вход охлаждающего газового потока, выполненный в рекуперативном теплообменном аппарате, соединен с выходом газового потока, выполненным во втором сепараторе, в котором выполнен вывод регенерированного водометанольного раствора. Изобретение обеспечивает повышение качества регенерации BMP и повышение эффективности процесса регенерации BMP. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к установкам для регенерации метанола из водных растворов метанола (далее в тексте - BMP) и может быть использовано в нефтяной и газовой промышленности.

Известны установки регенерации метанола (см. Бухгалтер Э.Б. Метанол и его использование в газовой промышленности. М.: Недра, 1986, 238 с. и Караваев М.М. Технология синтетического метанола. М.: Химия, 1984, 240 с.) в которых на регенерацию поступает насыщенный BMP с установки подготовки газа, где метанол применяется для предотвращения гидратообразования. Для извлечения метанола из BMP используется стационарный процесс ректификации при атмосферном давлении с испарением жидкости в кубовой части и парциальной дефлегмацией.

В результате проведения процесса образуется три материальных потока (один целевой и два побочных):

- регенерированный водно-метанольный раствор высокой концентрации (более 90 мас. %), направляемый в емкостной парк;

- кубовая вода с концентрацией метанола менее 4 мас. %, направляемая на утилизацию;

- газ дегазации, (содержащий легкие компоненты природного газа, метанол и воду), направляемый, как правило, на факел.

Также известна установка регенерации метанола, реализующая процесс предотвращения гидратообразования природного газа (см. а.с. SU 1330124 А1, С07С 31/04, С07С 29/76, 15.08.1987). В установку входят ректификационная колонна, в которой выполнен вход насыщенного водометанольного раствора, выход парогазовой смеси и вход нагретого газа в кубовую часть колонны из нагревателя, холодильник (охлаждающий аппарат), вход которого связан с выходом парогазовой смеси из ректификационной колонны, а выход охлажденной парогазовой смеси из холодильника связан с входом в первый сепаратор, в котором также выполнены выход воды из установки и выход газометанольной смеси на охлаждение в другой холодильник, выход из которого связан с входом охлажденной газометанольной смеси во второй сепаратор, в котором выполнен выход товарного метанола с установки. Ректификационная колонна представляет собой массообменный аппарат с 40 теоретическими ступенями контакта. Жидкость с нижней части колонны не отводится.

Упомянутое выше техническое решение имеет следующие недостатки:

- вся вода, поступающая в колонну, направляется в первый сепаратор, что приводит увеличению паровой нагрузки верхней части колонны и высокому энергопотреблению на испарение всего входного потока;

- поток рециркулирующего газа из второго (холодного) сепаратора характеризуется низким влагосодержанием, определяемым температурой его работы, причем этот поток при подаче в нижнюю (отгонную) часть ректификационной колонны охлаждает ее за счет внесения холода с потоком газа и за счет испарения воды и метанола и для компенсации этого эффекта требуется дополнительный подвод тепла.

Задачей, на решение которой направлено заявленное изобретение, является создание эффективной установки регенерации водного раствора метанола.

Техническим результатом заявленной установки регенерации водного раствора метанола является повышение качества регенерации BMP и повышение эффективности процесса регенерации BMP за счет повышения селективности процесса извлечения метанола и снижения энергопотребления на испарение воды в кубовой части ректификационной колонны и на конденсацию паров метанола и воды в верхней части ректификационной колонны.

Технический результат достигается за счет разработки установки регенерации водного раствора метанола, в состав которой входят рекуперативный теплообменник, ректификационная колонна, охлаждающий теплообменник, первый сепаратор, насос орошения, компрессор, рекуперативный теплообменный аппарат, теплообменник, второй сепаратор и испаритель, при этом вход нагретого водного раствора метанола в ректификационную колонну, соединен с выходом нагретого водного раствора метанола, выполненным в рекуперативном теплообменнике, вход газового потока, выполненный в ректификационной колонне, соединен с выходом охлаждающего газового потока, выполненным в рекуперативном теплообменном аппарате, вход для орошающего жидкостного потока, выполненный в ректификационной колонне, соединен с напорным патрубком насоса орошения, всасывающий патрубок которого соединен с выходом жидкостного потока, выполненным в первом сепараторе, выход парогазовой смеси, выполненный в ректификационной колонне, соединен с входом охлаждающего теплообменника, выход которого соединен с входом парогазовой смеси, выполненным в первом сепараторе, выход кубовой жидкости, выполненный в ректификационной колонне, соединен с входом кубовой жидкости, выполненным в испарителе, выход пара из которого соединен с входом пара, выполненным в кубовой части ректификационной колонны, выход нагретой и неиспаренной части кубовой жидкости, выполненный в испарителе, соединен с входом нагретой и неиспаренной части кубовой жидкости, выполненным в рекуперативном теплообменнике, выход парогазовой смеси, выполненный в первом сепараторе, соединен с входом компрессора, выход из которого соединен с входом компримированной парогазовой смеси, выполненным в рекуперативном теплообменном аппарате, вход охлаждающего газового потока, выполненный в рекуперативном теплообменном аппарате, соединен с выходом газового потока, выполненным во втором сепараторе, выход охлажденной газожидкостной смеси, выполненный в рекуперативном теплообменном аппарате, соединен с входом газожидкостной смеси, выполненным теплообменнике, выход охлажденной газожидкостной смеси, выполненный в теплообменнике, соединен с входом газожидкостной смеси, выполненном во втором сепараторе, при этом теплообменник имеет вход и выход внешней охлаждающей среды, а второй сепаратор имеет выход газового потока, соединенный с входом газового потока, выполненным в рекуперативном теплообменном аппарате, а также выход регенерированного водного раствора метанола.

Заявленное изобретение поясняется чертежом.

Сущность заявленного технического решения поясняется чертежом.

На чертеже представлена установка регенерации BMP, в состав которой входят: рекуперативный теплообменник 1 для нагрева поступающего в установку насыщенного раствора BMP, ректификационная колонна 2, охлаждающий теплообменник 3 для охлаждения парогазовой смеси, поступающей из ректификационной колонны 2, насос 4 орошения, первый сепаратор 5, компрессор 6 для компримирования охлажденной в охлаждающем теплообменнике 3 парогазовой смеси, рекуперативный теплообменный аппарат 7 для охлаждения образующейся в нем газожидкостной смеси, теплообменник 8 для охлаждения поступившей в него из рекуперативного теплообменного аппарата 7 газожидкостной среды, второй сепаратор 9, испаритель 10, трубопровод 11 подачи насыщенного водометанольного раствора в рекуперативный теплообменник 1, трубопровод 12 подачи нагретого водометанольного раствора в ректификационную колонну 2, трубопровод 13 отвода парогазовой смеси из ректификационной колонны 2, трубопровод 14 подачи охлажденной парогазовой смеси, образованной в ректификационной колонне 2, в первый сепаратор 5, трубопровод 15 отвода парогазовой смеси, образованной при первичной сепарации, трубопровод 16 отвода жидкостного потока, образованного при первичной сепарации, трубопровод 17 подачи жидкостного потока, образованного при первичной сепарации, в ректификационную колонну, трубопровод 18 подачи компримированной парогазовой смеси в рекуперативный теплообменный аппарат 7, трубопровод 19 подачи образованной в рекуперативном теплообменном аппарате 7 газожидкостной смеси в теплообменник 8, трубопровод 20 подачи охлажденной в теплообменнике 8 газожидкостной смеси во второй сепаратор 9, трубопровод 21 отвода регенерированного BMP с установки, трубопровод 22 отвода образованного при вторичной сепарации газового потока в рекуперативный теплообменный аппарат 7, трубопровод 23 подачи охлаждающего газового потока в ректификационную колонну 2, трубопровод 24 отвода кубовой жидкости в испаритель 10, трубопровод 25 отвода паров испаренной части кубовой жидкости из испарителя 10 в ректификационную колонную 2, трубопровод 26 подачи нагретой и неиспаренной части кубовой жидкости из испарителя 10 в рекуперативный теплообменник 1 и трубопровод 27 отвода охлажденной неиспаренной части кубовой жидкости с установки на утилизацию, трубопровод 28 подачи внешней среды в теплообменник 8, трубопровод 29 отвода внешней среды из теплообменника 8.

Рекуперативный теплообменник 1 предназначен для нагрева насыщенного BMP по прямому ходу и охлаждения кубовой жидкости, отводимой затем на утилизацию, по обратному ходу и оснащена:

- патрубком подвода насыщенного BMP, соединенным с трубопроводом 11;

- патрубком отвода нагретого BMP, соединенным с трубопроводом 12;

- патрубком, подвода греющей среды (нагретой и неиспаренной части кубовой жидкости из испарителя 10), соединенным с трубопроводом 26;

- патрубком отвода греющей среды (нагретой и неиспаренной части кубовой жидкости) на утилизацию, соединенным с трубопроводом 27.

Ректификационная колонна 2 представляет собой массообменный аппарат тарельчатого или насадочного типа, оснащенный отсеком отбора углеводородов из массообменной части (размещение отсека по высоте ректификационной колонны 2 определяется температурой кипения жидких углеводородов) и кубовой частью. При этом колонна 2 оснащена следующими патрубками:

- первый входной патрубок - патрубок подвода нагретого водометанольного раствора, выполненный в средней части колонны 1 и соединенный с трубопроводом 12;

- второй входной патрубок - патрубок подвода охлаждающего газового потока, выполненный в верхней части колонны 2 и соединенный с трубопроводом 23;

- третий входной патрубок - патрубок подвода жидкостного потока на орошение колонны 2, выполненный в верхней (укрепляющей) массообменной части колонны 2 выше тарелки питания или под тарелкой питания и соединенный с трубопроводом 17;

- четвертый входной патрубок - патрубок подвода паров испаренной кубовой жидкости, выполненный в кубовой (нижней) части колонны 2 и соединенный с трубопроводом 25;

- первый выходной патрубок - патрубок отвода парогазовой смеси из колонны 2, выполненный в верхней (укрепляющей) массообменной части колонны 2 и соединенный с трубопроводом 13;

- второй выходной патрубок - патрубок отвода кубовой жидкости из колонны 2, выполненный в ее кубовой (нижней) части и связанный с трубопроводом 24.

Охлаждающий теплообменник 3 оснащен входным патрубком подвода охлаждаемой среды, указанный входной патрубок связан с трубопроводом 13, через который в указанный теплообменник 3 поступает парогазовая смесь, образованная в ректификационной колонне 2, также охлаждающий теплообменник 3 оснащен выходным патрубком, связанным с трубопроводом 14, через который осуществляется отвод охлажденной в теплообменнике 3 парогазовой смеси в первый сепаратор 5. В качестве охлаждающей среды в указанном теплообменнике 3 может быть использован атмосферный воздух, а также и другая охлаждающая среда, например, охлаждающая среда, отводимая из рекуперативного теплообменного аппарата 7 по трубопроводу 23, или газы, отводимые с установки подготовки газа, а именно: газ, отделенный при промежуточной сепарации, газ, отделенный при низкотемпературной сепарации, хладагент из холодильной машины.

Насос 4 орошения оснащен всасывающим патрубком, соединенным с трубопроводом 16, через который в насос 4 поступает жидкостной поток, выделенный после первичной сепарации, а также напорным патрубком, соединенным с трубопроводом 17, через который осуществляется подача указанного жидкостного потока на орошение в колонну 2 (жидкостной поток подается на верхние (укрепляющие) секции массообменной части колонны 2).

Первый сепаратор 5 оснащен следующими патрубками:

- входным патрубком подвода охлажденной парогазовой смеси, выполненный в средней части первого сепаратора 5 и соединенный с трубопроводом 14;

- выходным патрубком отвода жидкостного потока, выделенного при первичной сепарации, выполненным в нижней части сепаратора 5 и соединенным с трубопроводом 16;

- выходным патрубком отвода выделенной при первичной сепарации парогазовой смеси, выполненным в верхней части сепаратора 5 и соединенным с трубопроводом 15.

Компрессор 6 оснащен входным патрубком подвода выделенной при первичной сепарации парогазовой смеси из первого сепаратора 5, соединенным с трубопроводом 15, а также выходным патрубком отвода компримированной парогазовой смеси, связанный с трубопроводом 18.

Рекуперативный теплообменный аппарат 7 представляет собой холодильник-конденсатор, который может быть выполнен в виде кожухотрубного, пластинчатого, спирального или другого типа теплообменного аппарата, и оснащен следующими патрубками:

- первый входной патрубок - патрубок подвода охлаждаемой среды, соединенный с трубопроводом 18, по которому в рекуперативный теплообменный аппарат 7 поступает компримированная парогазовая смесь из компрессора 6;

- второй входной патрубок - патрубок подвода охлаждающей среды (охлаждающего газового потока из второго сепаратора), соединенный с трубопроводом 22;

- первый выходной патрубок - патрубок отвода охлажденной среды (газожидкостная смесь, образованная в рекуперативном теплообменном аппарате 7), соединенный с трубопроводом 19;

- второй выходной патрубок - патрубок отвода охлаждаемой среды (охлаждающий газовый поток), соединенный с трубопроводом 23, по которому охлаждающий газовый поток поступает в верхнюю часть ректификационной колонны 2.

Теплообменник 8 оснащен следующими парубками:

- первый входной патрубок - патрубок подвода охлажденной охлаждаемой среды (газожидкостная смесь), соединенный с трубопроводом 19, по которому в теплообменник 8 газожидкостная смесь поступает из рекуперативного теплообменного аппарата 7;

- первый выходной патрубок - патрубок отвода охлажденной среды (газожидкостной среды), соединенный с трубопроводом 20;

- второй входной патрубок - патрубок подвода внешней охлаждающей среды, соединенный с трубопроводом 28;

- второй выходной патрубок - патрубок отвода внешней охлаждающей среды, соединенный с трубопроводом 29.

Второй сепаратор 9 оснащен следующими патрубками:

- патрубок подвода газожидкостной смеси, соединенный с трубопроводом 20, по которому газожидкостная смесь из теплообменника 8 поступает на вторичную сепарацию;

- патрубок отвода газового потока, выделенного при вторичной сепарации, соединенный с трубопроводом 22, по которому указанный газовый поток отводится в рекуперативный теплообменный аппарат 7;

- патрубок отвода регенерированного водометанольного раствора с установки.

Испаритель 10 представляет собой испаритель огневого нагрева или испаритель с промежуточным теплоносителем и оснащен патрубком подвода кубовой жидкости из кубовой части ректификационной колонны 2, связанным с трубопроводом 24, патрубком отвода паров испаренной кубовой жидкости из испарителя 10, связанным с трубопроводом 25, по которому испаренная часть кубовой жидкости направляется в кубовую часть ректификационной колонны 2, и патрубком отвода нагретой и неиспаренной части кубовой жидкости, связанным с трубопроводом 26, по которому неиспаренная часть кубовой жидкости поступает в рекуперативный теплообменник 1 для нагрева поступающей в установку водометанольной смеси.

Отбор кубовой жидкости из испарителя 10 осуществляется под контролем регулирующего клапана (на чертеже не показан) и производится через выходной патрубок, соединенный с трубопроводом 26.

Установка регенерации водного раствора метанола работает следующим образом.

Исходный BMP направляют в трехфазный разделитель (не показан на чертеже), где происходит дегазация и отделение нестабильного углеводородного конденсата.

Затем по трубопроводу 11 BMP с концентрацией более 1 масс. % и температурой около 20°С подают в патрубок подачи водометанольного раствора (нагреваемой среды) рекуперативного теплообменника 1.

BMP подогревается до температуры около 60°С в рекуперативном теплообменнике 1 и поступает по трубопроводу 12 в среднюю часть ректификационной колонны 2.

В ректификационной колонне 2 происходит концентрирование метанола в паровой фазе в верхней (укрепляющей) части ректификационной колонны 2 и концентрирование воды в жидкой фазе в нижней (отгонной, кубовой) части ректификационной колонны 2.

Ректификационная колонна 2 содержит 10-15 теоретических ступеней контакта. По высоте ректификационной колонны 2 за счет подогрева кубовой части и поступления более холодного жидкостного потока через трубопровод 17 подачи жидкостного потока на орошение колонны 2 устанавливаются стационарные профили температур и концентраций метанола и воды.

Ректификационная колонна 2 работает в режиме, когда весь жидкостной поток, образовавшийся в первом сепараторе 5, возвращается в качестве жидкостного потока в ректификационную колонну 2 при атмосферном или небольшом (10…50 кПа) избыточном давлении.

С верха ректификационной колонны 2 парогазовая смесь, насыщенная водой и метанолом, поступает с температурой около 70°С по трубопроводу 13 в охлаждающий теплообменник 3, где охлаждается до температуры 20…25°С. Охлаждение упомянутой парогазовой смеси до более низких температур позволяет получать регенерированный BMP с концентрацией метанола более 80%, но ограничивает применение в охлаждающем теплообменнике 3 в качестве охлаждающей среды атмосферного воздуха в летний период.

После охлаждения в охлаждающем теплообменнике 3 охлажденная парогазовая смесь по трубопроводу 14 поступает в первый сепаратор 5, где отделяется жидкостной поток, переставляющий собой водный раствор метанола с концентрацией 22-27 масс. %, который поступает в трубопровод 16 отвода жидкостного потока на всасывающий патрубок насоса 4 орошения. Затем упомянутый BMP нагнетается насосом 4 орошения в трубопровод 17 и подается в качестве орошения (флегмы) в верхнюю секцию массообменной части ректификационной колонны 2.

Парогазовая смесь, выделяемая в первом сепараторе 5, по трубопроводу 15 подается в компрессор 6, где она дожимается (компримируется) до 3…5 атм.

Компримированная парогазовая смесь по трубопроводу 18 подается с температурой 60…90°С во входной патрубок для охлаждаемой среды (компримированной парогазовой смеси) рекуперативного теплообменного аппарата 7, в котором она охлаждается до температуры 20…30°С. В качестве охлаждающей среды рекуперативного теплообменного аппарата 7 используется газовый поток (так называемый рециркулирующий газовый поток), отводимый из второго сепаратора 9. Из рекуперативного теплообменного аппарата 7 охлажденная газожидкостная (газометанольная) смесь по трубопроводу 19 поступает во входной патрубок охлаждаемой среды (газометанольной смеси) теплообменного аппарата 8, в котором она охлаждается до температуры минус20…30°С. В качестве охлаждающей среды теплообменного аппарата 8 может использоваться газ низкотемпературной сепарации или иной низкотемпературный хладагент.

Охлажденная газожидкостная (газометанольная) смесь по трубопроводу 20 поступает во второй сепаратор 9. При охлаждении до указанных температур во втором сепараторе 9 происходит конденсация жидкости, концентрация метанола в которой составляет: 80…99 масс. %.

По трубопроводу 21 осуществляется отвод из установки упомянутой жидкости в емкости хранения в качестве регенерированного BMP.

При этом для повышения концентрирования метанола возможно часть регенерированного BMP, отводимого по трубопроводу 21, направить на верхнюю тарелку ректификационной колонны 2 или в трубопровод 16 отвода жидкостного потока из первого сепаратора 5.

Газовый поток из второго сепаратора 9 отводится через трубопровод 22 рециркулирующего газового потока в рекуперативный теплообменный аппарат 7 в качестве охлаждающей среды. После прохождения через рекуперативный теплообменный аппарат 7 упомянутый поток подают в верхнюю (укрепляющую) часть ректификационной колонны 2 выше тарелки питания или под тарелку питания.

В верхнюю (укрепляющую) часть ректификационной колонны 2 выше тарелки питания или под тарелку питания также может подаваться вместо рециркулирующего газового потока, отводимого из второго сепаратора 9, другой газ, химически инертный по отношению к метанолу и воде: углеводородный поток газа, отводимый из установок подготовки природного газа (газ низкотемпературной сепарации, газ промежуточной сепарации, газ стабилизации, азот или другой газ, химически инертный по отношению к метанолу и воде с суммарным удельным содержанием воды и метанола менее 10 г/м3).

Если в верхнюю (укрепляющую) часть ректификационной колонны 2 выше тарелки питания или под тарелку питания подается вместо газового потока из второго сепаратора 9 горючий газ, то перед отводом регенерированного BMP с концентрацией метанола более 80 мас. % через трубопровод 21 в емкости для хранения регенерированного BMP осуществляют подогрев и дегазацию регенерированного BMP, для чего установку снабжают подогревателем и дегазатором. Подогрев и дегазацию регенерированного BMP осуществляют для удаления из него легких углеводородов перед направлением в емкости для хранения.

В испаритель 10 по трубопроводу 24 осуществляется подача кубовой жидкости из ректификационной колонны 2 (температура кубовой жидкости 100…110°С).

В испарителе 10 кубовая жидкость нагревается до температуры около 100…110°С и начинает испаряться. Пары испаренной части кубовой жидкости по трубопроводу 25 подачи пара подаются в кубовую часть ректификационной колонны 2.

Отбор неиспаренной части кубовой жидкости (кубовой воды) из испарителя 10 осуществляется под контролем регулирующего клапана (на схеме не указан) и производится через выходной патрубок, соединенный с трубопроводом 26.

Тепло неиспаренной части кубовой жидкости используется для нагрева BMP в рекуперативном теплообменнике 1.

После охлаждения в рекуперативном теплообменнике 1 потоком BMP кубовая жидкость направляется на утилизацию.

Заявленное техническое решение позволит снизить число теоретических ступеней контакта в ректификационной колонне в 3-4 раза: с 40 до 10-15, а также позволит обрабатывать более низкие концентрации метанола во входном потоке: до 1 мас. % вместо 5 мас. %.

За счет десорбции метанола из водного раствора метанола, осуществляемой посредством подачи рециркулирующего газового потока, получаемого при вторичной сепарации, в верхнюю (концентрационную) часть ректификационной колонны выше или под тарелку питания, и за счет использования сопровождающего процесс десорбции охлаждения, повышается концентрация метанола в водной фазе и, следовательно, повышается селективность процесса извлечения метанола, а также снижаются энергозатраты на охлаждение флегмы.

Компримирование потока перед вторичным сепаратором повышает содержание метанола в жидкой фазе сепараторов.

При работе ректификационной колонны в режиме полного орошения (вся жидкость, образовавшаяся в первичном сепараторе, возвращается в качестве флегмы в ректификационную колонну) повышается концентрация получаемого регенерированного метанола.

Отвод воды с небольшой примесью метанола, который осуществляется с куба ректификационной колонны в испаритель, сокращает энергозатраты на подогрев воды в кубовой части ректификационной колонны и на охлаждение паров в верхней части ректификационной колонны.

Установка регенерации водного раствора метанола, в состав которой входят рекуперативный теплообменник, ректификационная колонна, охлаждающий теплообменник, первый сепаратор, насос орошения, компрессор, рекуперативный теплообменный аппарат, теплообменник, второй сепаратор и испаритель, при этом вход нагретого водного раствора метанола в ректификационную колонну соединен с выходом нагретого водного раствора метанола, выполненным в рекуперативном теплообменнике, вход газового потока, выполненный в ректификационной колонне, соединен с выходом охлаждающего газового потока, выполненным в рекуперативном теплообменном аппарате, вход для орошающего жидкостного потока, выполненный в ректификационной колонне, соединен с напорным патрубком насоса орошения, всасывающий патрубок которого соединен с выходом жидкостного потока, выполненным в первом сепараторе, выход парогазовой смеси, выполненный в ректификационной колонне, соединен с входом охлаждающего теплообменника, выход которого соединен с входом парогазовой смеси, выполненным в первом сепараторе, выход кубовой жидкости, выполненный в ректификационной колонне, соединен с входом кубовой жидкости, выполненным в испарителе, выход пара из которого соединен с входом пара, выполненным в кубовой части ректификационной колонны, выход нагретой и неиспаренной части кубовой жидкости, выполненный в испарителе, соединен с входом нагретой и неиспаренной части кубовой жидкости, выполненным в рекуперативном теплообменнике, выход парогазовой смеси, выполненный в первом сепараторе, соединен с входом компрессора, выход из которого соединен с входом компримированной парогазовой смеси, выполненным в рекуперативном теплообменном аппарате, вход охлаждающего газового потока, выполненный в рекуперативном теплообменном аппарате, соединен с выходом газового потока, выполненным во втором сепараторе, выход охлажденной газожидкостной смеси, выполненный в рекуперативном теплообменном аппарате, соединен с входом газожидкостной смеси, выполненным в теплообменнике, выход охлажденной газожидкостной смеси, выполненный в теплообменнике, соединен с входом газожидкостной смеси, выполненным во втором сепараторе, при этом теплообменник имеет вход и выход внешней охлаждающей среды, а второй сепаратор имеет выход газового потока, соединенный с входом газового потока, выполненным в рекуперативном теплообменном аппарате, а также выход регенерированного водного раствора метанола.
УСТАНОВКА РЕГЕНЕРАЦИИ ВОДНОГО РАСТВОРА МЕТАНОЛА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 160.
20.01.2013
№216.012.1d9f

Способ определения содержания бенз(а)пирена в техническом углероде

Изобретение относится к способам исследования материалов с использованием газовой хроматографии в сочетании с квадрупольной масс-спектрометрией (далее - ГХ/МС) и может быть использовано в промышленных и научно-исследовательских лабораториях при исследовании качества технического углерода...
Тип: Изобретение
Номер охранного документа: 0002473077
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.206e

Способ определения основных параметров совместно работающих газовых пластов

Изобретение относится к области промыслово-геофизических исследований совместно работающих газовых пластов, проводимых с целью определения их основных параметров: пластового давления, пластовой температуры и фильтрационных коэффициентов, необходимых для эффективной разработки месторождения....
Тип: Изобретение
Номер охранного документа: 0002473803
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.238c

Легкий ингибирующий буровой раствор для вскрытия пластов в условиях аномально низких пластовых давлений

Изобретение относится к нефтегазодобывающей промышленности, в частности к буровым растворам с высокими пенообразующими свойствами, позволяющим производить вскрытие продуктивных пластов в условиях аномально низких пластовых давлений АНПД. Технический результат - повышение эффективности вскрытия...
Тип: Изобретение
Номер охранного документа: 0002474602
Дата охранного документа: 10.02.2013
10.06.2013
№216.012.48e5

Способ заканчивания газовой скважины

Изобретение относится к области сооружения газовых скважин на месторождениях и подземных хранилищах природного газа, попутного нефтяного газа, гелия, углекислого и других газов и может быть использовано при цементировании газовых скважин. Способ заканчивания газовой скважины включает бурение...
Тип: Изобретение
Номер охранного документа: 0002484241
Дата охранного документа: 10.06.2013
10.07.2013
№216.012.5406

Способ очистки раствора диэтаноламина от примесей

Изобретение относится к новому способу очистки раствора диэтаноламина от примесей, включающему нагрев загрязненного водного раствора диэтаноламина, содержащего продукты деструкции диэтаноламина и термостабильные соли, с последующим фракционированием полученной парожидкостной смеси. При этом...
Тип: Изобретение
Номер охранного документа: 0002487113
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.5680

Биосорбент для очистки воды от углеводородных загрязнений и способ его получения

Группа изобретений относится к промышленной биотехнологии. Предложен способ получения биосорбента для очистки воды от углеводородных загрязнений. Способ включает иммобилизацию биомассы, содержащей взятые в эффективном количестве нефтеокисляющие микроорганизмы, в органический гидрофобный сорбент...
Тип: Изобретение
Номер охранного документа: 0002487752
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.571d

Блокирующий состав для изоляции зон поглощений при бурении и капитальном ремонте скважин

Изобретение относится к нефтегазодобывающей промышленности, в частности к буровым растворам и блокирующим составам с высокими пенообразующими свойствами, позволяющими производить вскрытие и временную блокаду продуктивных пластов в условиях поглощения. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002487909
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.571e

Тампонажный раствор

Изобретение относится к нефтегазодобывающей промышленности, в частности к тампонажным растворам, предназначенным для крепления скважин, и может быть использовано при строительстве скважин в солевых отложениях в температурном диапазоне от 60° до 150°С. Технический результат, достигаемый...
Тип: Изобретение
Номер охранного документа: 0002487910
Дата охранного документа: 20.07.2013
10.09.2013
№216.012.66de

Способ очистки раствора диэтаноламина от примесей

Изобретение относится к области очистки газов и может быть использовано в газовой или в нефтеперерабатывающей промышленности для очистки абсорбентов от примесей. В способе очистки раствора диэтаноламина от примесей нагревают загрязненный раствор диэтаноламина, содержащий продукты деструкции...
Тип: Изобретение
Номер охранного документа: 0002491981
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.67c0

Буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при строительстве нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород и солевых отложений в условиях действия высоких забойных температур до 220°C. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002492207
Дата охранного документа: 10.09.2013
Показаны записи 1-10 из 42.
10.01.2013
№216.012.18fe

Электрокаталитический способ синтеза углеводородов и спиртов на основе растительного сырья

Изобретение относится к электрокаталитическому способу получения углеводородов, в частности диенов, олефинов, алканов и спиртов, путем гальваностатического электролиза смеси 10-ундециленовой и уксусной кислот, которые частично нейтрализованы и находятся в виде соли. Способ осуществляют в...
Тип: Изобретение
Номер охранного документа: 0002471890
Дата охранного документа: 10.01.2013
27.02.2013
№216.012.2bfe

Способ низкотемпературной подготовки природного газа и извлечения нестабильного углеводородного конденсата из пластового газа (варианты) и установка для его осуществления

Изобретение относится к газовой промышленности и может быть использовано на газоконденсатных месторождениях, расположенных в зоне многолетнемерзлых грунтов. В установке осуществляют первичную сепарацию жидкости из входного потока. В газ первичной сепарации добавляют метанол. Охлаждение...
Тип: Изобретение
Номер охранного документа: 0002476789
Дата охранного документа: 27.02.2013
10.06.2013
№216.012.4729

Биогибридный материал для сорбции и деградации нефти и нефтепродуктов

Изобретение относится к биотехнологии и может быть использовано при безотходной очистке от аварийных разливов нефти и нефтепродуктов водных и твердых поверхностей. Предложен биогибридный материал для сорбции и деградации нефти и нефтепродуктов поверхностных и донных отложений. Материал включает...
Тип: Изобретение
Номер охранного документа: 0002483797
Дата охранного документа: 10.06.2013
20.08.2014
№216.012.ecd3

Способ мониторинга теплового взаимодействия скважин с многолетнемерзлыми породами

Изобретение относится к газовой и нефтяной промышленности и может быть использовано при освоении северных месторождений, а также при контроле теплоизолирующей способности конструкций скважин, смыкания ореолов протаивания многолетнемерзлых пород (ММП) на соседних скважинах куста разрабатываемых...
Тип: Изобретение
Номер охранного документа: 0002526435
Дата охранного документа: 20.08.2014
20.09.2014
№216.012.f636

Биоразлагаемый композиционный сорбент нефти и нефтепродуктов

Изобретение относится к области биотехнологии. Предложен биоразлагаемый композиционный сорбент нефти и нефтепродуктов. Сорбент содержит термопластичный полимер с волокнообразующими свойствами, полученный методом аэродинамического формования, и нестерильные растения рода Сфагнум (Sphagnum),...
Тип: Изобретение
Номер охранного документа: 0002528863
Дата охранного документа: 20.09.2014
10.12.2014
№216.013.0ee2

Биогибридный композиционный материал

Изобретение относится к безотходной очистке от аварийных разливов нефти и нефтепродуктов природных и искусственных водоемов, сточных вод, жидких отходов производств, твердых поверхностей, а также в качестве превентивной меры. Сорбент включает термопластичный полимер с волокнообразующими...
Тип: Изобретение
Номер охранного документа: 0002535227
Дата охранного документа: 10.12.2014
20.04.2015
№216.013.434a

Способ определения содержания монометиланилина в углеводородных топливах индикаторным тестовым средством и индикаторное тестовое средство для его осуществления

Группа изобретений относится к контролю параметров качества углеводородных топлив. Индикаторное тестовое средство для определения содержания N-метиланилина в углеводородных топливах представляет собой нейтральный оксид алюминия с иммобилизованным на его поверхности гексацианоферратом (III)...
Тип: Изобретение
Номер охранного документа: 0002548724
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4705

Биогибридный материал для сорбции и деградации нефти и нефтепродуктов

Изобретение относится к области биотехнологии. Предложен биогибридный композиционный материал для сорбции и деградации нефти и нефтепродуктов. Материал представляет собой термопластичный полимер с волокнообразующими свойствами - сополимер акрилонитрила с метилакрилатом. Он содержит...
Тип: Изобретение
Номер охранного документа: 0002549685
Дата охранного документа: 27.04.2015
10.11.2015
№216.013.8b90

Способ определения содержания биоцидного азотсодержащего органического соединения в водном растворе этого соединения

Изобретение относится к аналитической химии и может быть использовано для определения концентрации азотсодержащих противомикробных препаратов (изиниазида, этамбутола и др.) и антибиотиков (цефалоспоринового ряда - цефазолина, цефатоксима, цефуроксима, цефалексина и др.) в исследуемых жидких...
Тип: Изобретение
Номер охранного документа: 0002567335
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.9fb8

Способ получения синтез-газа

Изобретение относится к высокотемпературным каталитическим окислительным способам превращения метана с получением синтез-газа и может быть использовано в химической технологии. В реактор, в который помещен катализатор, подают исходную газовую смесь, содержащую смесь метана и углекислого газа....
Тип: Изобретение
Номер охранного документа: 0002572530
Дата охранного документа: 20.01.2016
+ добавить свой РИД